浅谈车路协同在路口可行性的应用场景

智驾最前沿 2022-04-22 08:00

--后台回复“资料”,领取特斯拉专利技术解析报告--

随着智能交通技术和车联网的发展,为车路协同技术带来了很多发展机遇,例如云计算、5G、大数据、移动互联等技术,使我们在高精度定位、精细化信息服务和新一代传感网络构建等方面,都有了更加可靠的技术保证。近年来,国内外基本建立了车路协同的体系框架,定义了一系列应用场景,也开展了相应试验和应用,但是仍处于研究和试验阶段。虽然在各地建设上已经实现了部分场景的车路协同,想要实现车路协同技术的普遍应用仍需很长的路要走。
什么是车路协同(V2X)?
车路协同(V2X)即采用无线通信和车联网等技术,全方位实现车与车、车与路、车与人之间动态实时信息交互,达到对车辆和道路的协同管理,进一步促进人、车和路的有效协同,保证交通安全并提高运行效率。(V2X)其中V代表车辆,X代表任何与该车辆交互信息的对象。
车路协同在路口的应用场景可以分为三类:安全保障类,效率提升类和信息服务类。针对这三类应用场景可以分别定义基础业务场景和增强业务场景。增强业务场景下,对于车辆信息交互的实时性,可靠性和安全性提出了更高的要求,这需要协同控制的方法和理论更加成熟。
面向机动车的服务场景
1、信号灯状态信息实时推送
在中国汽车技术研究中心有限公司,中国汽车工程研究院等多家单位联合编制《智能网联汽车自动驾驶功能测试规程》中,交通信号灯识别及响应是智能网联汽车自动驾驶功能必须的检测项目和测试场景。
由于交叉口信号灯样式不一,以及光照及遮挡等因素的影响,导致某些情况下自动驾驶车辆无法对信号灯状态准确识别,通过信号机与车辆之间通过V2I设备进行通讯,信号机能够直接把信号灯状态信息发送给自动驾驶汽车,能够代替视频识别信号灯状态的过程且能提高识别的准确率。
车路协同能够解决99.9%前向红绿灯无法识别问题,减少车载系统10%的计算量,提高车辆通过交叉口的通行效率以及安全性。
2、辅助车辆路径规划和提供建议车速
通过信号机以及路侧设施将信号灯状态、剩余时间、可变车道信息、车道级的道路交通流量和排队长度、交通事故情况、车辆限行、禁行等信息,通过RSU实时推送给车辆,辅助车辆针对当前位置和状态,结合途径路段和交叉口的状态信息,制定最优的路径规划和建议行车速度,减少通行时间,提高通行效率。
以公交车路协同应用示范为例,该应用通过智能网联车路协同公共服务平台提供的低延时通信能力、终端-边缘-区域-中心的多级分布式V2X计算能力和道路交通网联数据,提升公交运行效率和行车安全。公交车通过绿波车速智能引导能够有效减少公交车辆的延误以及停车次数,提升公交车辆运行效率的同时还能达到节能减排的目的。
车辆接收到路测设备发来的红绿灯灯态信息,在不改变当前交通信号控制方案的前提下,根据当前车辆的位置,速度,信号相位剩余时间,依托平台端-边-云的协同计算得出建议行驶速度,不影响道路其他社会车辆正常运行,实现公交进站停靠,完成上下客并启动“绿波”通过交叉口。
当特殊车辆通过交叉口时,通过V2I与交通信号灯互动,根据交通流状况与车辆通行优先级动态调整交通信号灯,同时通过V2X实现对道路其他车辆的让路提醒,确保特种车辆能够以最短时间通过。
对于车路协同提供的服务,信息服务和安全服务可以提供给消费者车辆终端,交通效率提升类服务可以提供给城市交通管理部门,协同服务则是车辆编队行驶,主要针对大型物流运输企业。
在目前的车路协同项目中,大部分信号机只是作为车的一种信号源,是车辆的读取场景之一。在车路协同背景下,信号机的定位不仅是车路协同信号控制的一个信号源,而是定位成一个集感知,信号控制,网络通信和数据交换于一体的智慧终端,对现有功能进行升级,支持车路协同不同发展阶段的相关应用场景测试,既立足于当下,也着眼于未来。
3、交叉口车辆辅助驾驶
对于无信号交叉口,由于存在视觉盲区,车辆通过交叉口时,普通车辆无法感知到其他方向驶来的车辆,通过车车通信和车路通信,两个方向的车辆都能够感知到对方的位置和速度信息,进而制定合理的速度和轨迹规划,在确保安全的前提下,快速的通过交叉口。
4、车辆闯红灯预警
当自动驾驶车辆通过交叉口获取当前交叉口的信号灯状态以及剩余时间时,到目前关于车路协同在交叉口方面的主要测试场景都集中在主动安全和辅助驾驶的场景。
5、绿灯时车辆起步提醒
当车辆在交叉口排队等候通行时,车辆通过V2X检测到前车启动时,能够在保证安全车距的前提下,提示车辆启动,确保自身能够快速通过交叉口,提高整个信号周期内通过交叉口的车辆数以及通行效率。
6、后车跟驰实时主动安全预警
当自动驾驶车辆在道路上行驶时,会通过车辆自身安装的各类感知设备对周围进行实时感知,形成感知对象列表,当车辆检测到距离前车距离小于安全距离时,会进行碰撞预警以及根据前后车的状态采取适当的驾驶策略行为。
7、智能潮汐车道
潮汐车道对于解决路段双向交通流量失衡,提高交通运行效率具有重要意义。目前广泛采用的是人工或是定时控制的方式,对交通环境适应性较差。此外,在潮汐车道方向切换过程中,清空时间设置不合理。基于车路协同技术,通过车车,车路动态实时信息交互,能够实现对全时空动态交通信息采集与融合,在此基础上能够对潮汐车道开启前后的交通流状态演化规律进行精准挖掘,为潮汐车道的智能控制策略提供理论依据。
面向非机动车、行人的服务场景
基于自动驾驶车辆自身和路侧检测设备的强大感知能力,能够实现对信号交叉口人车路全要素的实时精确感知。通过行人过街需求响应以及信号控制算法优化的同步实施,当主干道无人过街时,行人信号灯自动调整为红灯常亮状态,将相应绿灯时间增加到主干道上。
此外,通过视频数据对过街行人进行特殊人群识别,如果分析出过街人群中存在行动不便的,会适当增加行人通行绿灯时间,此外在行人过街时,通过语音提示功能对路人进行提醒,一方面能够提醒“低头族”,同时也能够帮助存在视觉障碍的人更安全的通过交叉口。
面向信号灯配时优化场景
在当前车路协同技术快速发展和推广应用的同时,从交通控制层面形成一套与之相适应和匹配的交通控制理论和技术,是目前车路协同技术发展过程中面对的主要问题。目前车路协同技术的发展,为交通控制带来了全时空动态交通信息,提供了更加灵活和精细的控制措施,为整个交通信号控制技术升级提供了可能。
1、融合自动驾驶数据的信号配时优化
从目前自动驾驶车辆的发展进度来看,未来的五到十年之间,道路上会是不同级别自动驾驶车辆与人工驾驶车辆共存的状态。这种情况下,通过自动驾驶车辆自身的轨迹数据结合路侧设备感知的车辆信息,利用交通波理论对整个交叉口车辆的轨迹进行重构,通过重构后的轨迹对整个信号交叉口的状态进行完整刻画,如获取排队长度、控制延误、停车次数等参数、汇入车辆干扰、排队溢出、空放、协调流向错误,通过这些对交叉口运行机理进行分析以及问题诊断。根据诊断出的原因对交叉口进行针对性的方案优化。
2、车路协同成熟状态下的信号优化控制
首先,在车路协同的技术框架体系下,车辆会将自身的速度,位置,以及加速度信息通过V2X方式实时传递给路侧和云控平台,车辆和云端的信息交互使得云端能够发送指令给自动驾驶车辆,控制车辆的轨迹,从而以一种更加精细化的控制策略来对交叉口信号配时方案进行优化设计。
通过自动驾驶车辆和路侧设备,对交叉口各进口到方向的车辆进行识别,通过RSU传送给交通信号机,信号机通过对交叉口各进口道即将到达的车辆进行多维度的分析,生成交通信号配时方案,同时根据生成的交通信号配时方案对自动驾驶车辆的轨迹进行优化,利用动态规划的方法,循环迭代,生成最终的信号配时方案。上述方案适用于车流中自动驾驶车辆渗透率较高的条件下,渗透率越高,信号配时优化方案的效果越好。
转载自北京市高级别自动驾驶示范区,文中观点仅供分享交流,不代表本公众号立场,如涉及版权等问题,请您告知,我们将及时处理。
-- END --

智驾最前沿 「智驾最前沿」深耕自动驾驶领域技术、资讯等信息,解读行业现状、紧盯行业发展、挖掘行业前沿,致力于助力自动驾驶发展与落地!公众号:智驾最前沿
评论
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 41浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 86浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 101浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 65浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 86浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 168浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 105浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 73浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 51浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 70浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 106浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 69浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 44浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦