工程师解析:B类放大器是怎么一回事?

面包板社区 2020-03-02 00:00
与B类放大器相比,使用开关(D类)放大器可以提高效率。然而,这会引入开关噪声并使电路变得更加复杂。B类电路几乎没有噪声,电路更简单,并且具有完全的正弦波形。


图1显示了使用FET控制器件的B类放大器的通用电路图。

图1:使用FET控制器件的B类放大器。

许多年前,在工程学校,我们了解到这种B类放大器的最大效率为78.5%。详细的推导表明,B类放大器效率的通用公式为:

其中,π=3.14159…

Vp=输出正弦波的峰值电压(Vpsin(ωt));

Vdc=直流电源电压(见图1)。

由于放大器无法产生大于其自身电源电压的输出电压,因此Vp实际上不能超过Vdc因此,当Vp=Vdc时,效率最大:

最大效率=π/4=0.785=78.5%

公式1求得的最大效率相对于Vp=Vdc会适当减少,我们多年以前在学校中学到的知识得到了验证。在这种情况下,传输器件上的电压最小,则效率最高。当Vp<Vdc时,传输晶体管上的电压将会增加,这会产生更多的热量,而使电路效率降低。

这个公式是假定将恒定幅度的正弦输出电压输送到负载。例如,Industrial Test Equipment公司的变频器产品线中就有以恒定幅度正弦输出电压工作的放大器。这类设备将本地电源线的电压和频率转换为不同的电压和/或频率。500C型号可以将60Hz转换为50Hz,反之亦然,将50Hz转换为60Hz,并在两种情况下为负载提供恒定的115VAC

但是,使Vp=Vdc,会使放大器过于靠近边界条件。Vdc或Vp的微小变化,可能导致波形的顶部被削掉。换句话说,放大器不能驱动到Vp高于Vdc的程度。削波这种结果通常是不可接受的。Vp=Vdc不是实际的工作点。

考虑到10%的裕度,可以将最大Vp选择为0.9Vdc,这样效率就变成了:

效率=π/4×0.9Vdc/Vdc=70.7%

这就是B类放大器工作在恒定输出电压下的更实际的效率水平。

与B类放大器相比,使用开关(D类)放大器可以提高效率。然而,这会引入开关噪声并使电路变得更加复杂。B类电路几乎没有噪声,电路更简单,并且具有完全的正弦波形。

选择散热器

接下来考虑效率的一般公式:

效率=η=Pload/(Pdevice+Pload)

其中:

Pload=输送到负载的功率(W)

Pdevice=需要从FET耗散的功率

将这个公式变形可以得到:

这样就可以计算系统所需的散热量。例如,假设η=70.7%,Pload=100W,则500C型号所需的散热量为:

Pdevice=500×(1-0.707)/0.707=207W

这是在系统提供全输出功率(即500W)时的耗散。在较低的输出功率下,功耗成比例地降低。例如,在50W的输出功率下,耗散为20.7W。

所有的B类功率放大器都会在散热器上装有一个热敏开关。当散热器温度超过70℃时,这个开关就会打开,从而关闭放大器。当散热器冷却至50℃时,该开关就会关闭,从而自动恢复正常操作。

公式1 的推导

该推导分为两个主要部分:基本公式和积分后的结果。考虑到大多数读者可能不喜欢看乏味的计算细节,这里省略了这些部分之间的分步推导。这里提供了足够的信息,以便有兴趣的人可以验证结果。

由于积分公式代表瞬时功率,这些公式还是必要。必须将所有瞬时功率相加(积分),然后除以周期(π),从而获得半个周期内的平均功率。实际上,由于正弦波输出的正半部分和负半部分是对称的,并且每半部分都向负载提供相同的功率,因此我们仅需要对正弦波的1/2个周期进行积分(图2)。

图2:公式1的推导。

降额曲线 

从上面的例子可以得知,在Vp/Vdc=0.9的情况下,500S型号可以向负载提供500W功率,而散热量为207W(Pload=500W,Pdevice=207W)。那么,在较低的电压(即Vp/Vdc<0.9)下工作时,可以提供多少功率?

这个问题可以通过对公式2变形并用公式1代替η来解答。结果是:

继续看这个例子,令Vp/Vdc以0.1的增量从1变为0,并且令Pdevice=207W。要达到满额定功率输出,必须要加散热器耗散这么多的热量。由于有这样的散热器,我们可以将它用于所有级别的输出功率。

结果如表1所示,它使用上述公式和Excel电子表格构建。

最大负载功率(Pload)是Vp/Vdc的函数。

这里将Vp/Vdc=0.9视为最佳工作点(请参见前面的讨论)。工作在0.9<(Vp/Vdc)<1的范围内效率会更高,但这会太接近削波点。

表1:不同Vp/Vdc下的功率和效率。

该表显示,对于Vp/Vdc=0.9且耗散在207W的情况下,Pload=500W,这与先前计算的相同。随着Vp/Vdc的降低,500S型号的最大功率也会降低。例如,在Vp/Vdc=0.7时,只能提供大约250W功率,效率下降到55%。

推 荐 阅 读




保证放大器的稳定性什么最重要?反馈电阻一定要选对!
一文理清IC放大器中那些“去耦”与“接地”问题
运放大神分享:高速放大器的输入和输出电压范围问题

直流变压器?正激转换器?隔离放大器?你说了算!

模拟电路工程师设计宝典:放大器精华资料汇总


点在看,让我知道您有收获~~~



面包板社区 面包板社区——中国第一电子人社交平台 面包板社区是Aspencore旗下媒体,整合了电子工程专辑、电子技术设计、国际电子商情丰富资源。社区包括论坛、博客、问答,拥有超过250万注册用户,加入面包板社区,从菜鸟变大神,打造您的电子人脉社交圈!
评论 (0)
  • 你知道精益管理中的“看板”真正的意思吗?在很多人眼中,它不过是车间墙上的一块卡片、一张单子,甚至只是个用来控制物料的工具。但如果你读过大野耐一的《丰田生产方式》,你就会发现,看板的意义远不止于此。它其实是丰田精益思想的核心之一,是让工厂动起来的“神经系统”。这篇文章,我们就带你一起从这本书出发,重新认识“看板”的深层含义。一、使“看板”和台车结合使用  所谓“看板”就是指纸卡片。“看板”的重要作用之一,就是连接生产现场上道工序和下道工序的信息工具。  “看板”是“准时化”生产的重要手段,它总是要
    优思学院 2025-04-14 15:02 114浏览
  • 一、智能语音播报技术演进与市场需求随着人工智能技术的快速发展,TTS(Text-to-Speech)技术在商业场景中的应用呈现爆发式增长。在零售领域,智能收款机的语音播报功能已成为提升服务效率和用户体验的关键模块。WT3000T8作为新一代高性能语音合成芯片,凭借其优异的处理能力和灵活的功能配置,正在为收款机智能化升级提供核心技术支持。二、WT3000T8芯片技术特性解析硬件架构优势采用32位高性能处理器(主频240MHz),支持实时语音合成与多任务处理QFN32封装(4x4mm)实现小型化设计
    广州唯创电子 2025-04-15 08:53 88浏览
  • 在当今汽车电子化和智能化快速发展的时代,车规级电子元器件的质量直接关系到汽车安全性能。三星作为全球领先的电子元器件制造商,其车规电容备受青睐。然而,选择一个靠谱的三星车规电容代理商至关重要。本文以行业领军企业北京贞光科技有限公司为例,深入剖析如何选择优质代理商。选择靠谱代理商的关键标准1. 授权资质与行业地位选择三星车规电容代理商首先要验证其授权资质及行业地位。北京贞光科技作为中国电子元器件行业的领军者,长期走在行业前沿,拥有完备的授权资质。公司专注于市场分销和整体布局,在电子元器件领域建立了卓
    贞光科技 2025-04-14 16:18 133浏览
  • 三、芯片的制造1、制造核心流程 (1)晶圆制备:以高纯度硅为基底,通过拉晶、切片、抛光制成晶圆。 (2)光刻:光刻、离子注入、薄膜沉积、化学机械抛光。 (3)刻蚀与沉积:使用干法刻蚀(等离子体)精准切割图形,避免侧壁损伤。 (4)掺杂:注入离子形成PN结特性,实现晶体管开关功能。2、材料与工艺创新 (1)新材料应用: 高迁移率材料(FinFET中的应变硅、GaN在射频芯片中的应用); 新型封装技术(3D IC、TSV硅通孔)提升集成度。 (2)工艺创新: 制程从7nm到3nm,设计架构由F
    碧海长空 2025-04-15 11:33 117浏览
  • 时源芯微 专业EMC解决方案提供商  为EMC创造可能(适用于高频时钟电路,提升EMC性能与信号稳定性)一、设计目标抑制电源噪声:阻断高频干扰(如DC-DC开关噪声)传入晶振电源。降低时钟抖动:确保晶振输出信号纯净,减少相位噪声。通过EMC测试:减少晶振谐波辐射(如30MHz~1GHz频段)。二、滤波电路架构典型拓扑:电源输入 → 磁珠(FB) → 大电容(C1) + 高频电容(C2) → 晶振VDD1. 磁珠(Ferrite Bead)选型阻抗特性:在目标频段(如100MHz~1GH
    时源芯微 2025-04-14 14:53 88浏览
  •   高空 SAR 目标智能成像系统软件:多领域应用的前沿利器   高空 SAR(合成孔径雷达)目标智能成像系统软件,专门针对卫星、无人机等高空平台搭载的 SAR传感器数据,融合人工智能与图像处理技术,打造出的高效目标检测、识别及成像系统。此软件借助智能算法,显著提升 SAR图像分辨率、目标特征提取能力以及实时处理效率,为军事侦察、灾害监测、资源勘探等领域,提供关键技术支撑。   应用案例系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合
    华盛恒辉l58ll334744 2025-04-14 16:09 140浏览
  • 展会名称:2025成都国际工业博览会(简称:成都工博会)展会日期:4月23 -25日展会地址:西部国际博览城展位号:15H-E010科士威传动将展示智能制造较新技术及全套解决方案。 2025年4月23-25日,中国西部国际博览城将迎来一场工业领域的年度盛会——2025成都国际工业博览会。这场以“创链新工业,共碳新未来”为主题的展会上,来自全球的600+ 家参展企业将齐聚一堂,共同展示智能制造产业链中的关键产品及解决方案,助力制造业向数字化、网络化、智能化转型。科士威传动将受邀参展。&n
    科士威传动 2025-04-14 17:55 72浏览
  • 四、芯片封测技术及应用场景1、封装技术的发展历程 (1)DIP封装:早期分立元件封装,体积大、引脚少; (2)QFP封装:引脚密度提升,适用于早期集成电路。 (3)BGA封装:高密度互连,散热与信号传输优化; (4)3D封装:通过TSV(硅通孔)实现垂直堆叠,提升集成度(如HBM内存堆叠); (5)Chiplet封装:异质集成,将不同工艺节点的模块组合(如AMD的Zen3+架构)。 (6)SiP封装:集成多种功能芯片(如iPhone的A系列SoC整合CPU、GPU、射频模块)。2、芯片测试 (1
    碧海长空 2025-04-15 11:45 124浏览
  •   无人装备作战协同仿真系统软件:科技的关键支撑   无人装备作战协同仿真系统软件,作为一款综合性仿真平台,主要用于模拟无人机、无人车、无人艇等无人装备在复杂作战环境中的协同作战能力、任务规划、指挥控制以及性能评估。该系统通过搭建虚拟战场环境,支持多种无人装备协同作战仿真,为作战指挥、装备研发、战术训练和作战效能评估,提供科学依据。   应用案例   系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。   核心功能   虚拟战
    华盛恒辉l58ll334744 2025-04-14 17:24 78浏览
  • 一、芯片的发展历程总结:1、晶体管的诞生(1)电子管时代 20世纪40年代,电子管体积庞大、功耗高、可靠性差,无法满足计算机小型化需求。(2)晶体管时代 1947年,贝尔实验室的肖克利、巴丁和布拉顿发明点接触晶体管,实现电子信号放大与开关功能,标志着固态电子时代的开端。 1956年,肖克利发明晶体管。(3)硅基晶体管时代 早期晶体管采用锗材料,但硅更耐高温、成本低,成为主流材料。2、集成电路的诞生与发展 1958年,德州仪器工程师基尔比用锗材料制成世界上第一块含多个晶体管的集成电路,同年仙童半导
    碧海长空 2025-04-15 09:30 93浏览
  • 一、智能门锁市场痛点与技术革新随着智能家居的快速发展,电子门锁正从“密码解锁”向“无感交互”进化。然而,传统人体感应技术普遍面临三大挑战:功耗高导致续航短、静态人体检测能力弱、环境适应性差。WTL580微波雷达解决方案,以5.8GHz高精度雷达感知技术为核心,突破行业瓶颈,为智能门锁带来“精准感知-高效触发-超低功耗”的全新交互范式。二、WTL580方案核心技术优势1. 5.8GHz毫米波雷达:精准感知的革命全状态人体检测:支持运动、微动(如呼吸)、静态(坐卧)多模态感知,检测灵敏度达0.1m/
    广州唯创电子 2025-04-15 09:20 64浏览
  • 二、芯片的设计1、芯片设计的基本流程 (1)需求定义: 明确芯片功能(如处理器、存储、通信)、性能指标(速度、功耗、面积)及目标应用场景(消费电子、汽车、工业)。 (2)架构设计: 确定芯片整体框架,包括核心模块(如CPU、GPU、存储单元)的协同方式和数据流路径。 (3)逻辑设计: 通过硬件描述语言(如Verilog、VHDL)将架构转化为电路逻辑,生成RTL(寄存器传输级)代码。 (4)物理设计: 将逻辑代码映射到物理布局,涉及布局布线、时序优化、功耗分析等,需借助EDA工具(如Ca
    碧海长空 2025-04-15 11:30 95浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦