构建差动放大器及其性能优化方法!建议收藏

原创 亚德诺半导体 2022-04-20 17:58



有时需要在有较大共模信号的情况下测量小信号。在这类应用中,通常使用两个或三个运算放大器的集成仪表放大器。尽管仪表放大器具有出色的共模抑制比(CMRR),但价格因素,性能指标阻碍了其在此类应用中的使用。


下面就来分享构建差动放大器及其性能优化方法!



仪表放大器可能不具备用户要求的带宽、直流精度或功耗。因而,在这种情况下,用户可通过一个单放大器和外部电阻自行构建差分放大器,以替代仪表放大器。不过,除非使用匹配良好的电阻,否则这种电路的共模抑制比将很差。本应用笔记将探讨构建分立的差动放大器并优化其性能的数种方法,同时还将推荐几款可使解决方案的整体性价比能与单片仪表放大器相媲美的运算放大器产品。


一起来找“茬”(问题发现)


图1为采用一个典型的由单放大器构建的差动放大器,该放大器与一个传感器桥路相连。


图1


通过叠加原理可知,该电路的输出为两个输入之差的函数。图1所示电路的传递函数为:

下列情形下会出现一种特殊情况:当

等式(1)可以简化为等式(2):

输出等于两个输入之差乘以增益系数,该系数可设定为1.当电阻比匹配良好时,等式2成立。假定完美匹配电阻值 分别为:R2 = R4 = 10 kΩ,R1 = R3 = 1 kΩ,V1 = 2.5 V, V2 = 2.6 V,则有VOUT = 1 V.


如上所述,图1所示电路的缺点之一在于其共模抑制比较低,这是因电阻匹配误差所致。出于讨论方便和清晰考虑,我们重新画出该电路图,如图2所示。


图2


电阻R2的公差引起的误差为R2 (1 – error)。通过叠加原理,同时使R1 = R3,R2 = R4,在计算并进行排列之后,输出电压(VOUT)为:

根据等式3,共模增益(Acm)和差分增益(Adm)可定义为:

从等式4可见,当电阻值不存在误差(即error = 0)时,则 Acm = 0,放大器仅对差分电压作出响应,则为:

因此,当电阻比率误差为零(error = 0)时,电路的共模抑制比将在很大程度上取决于所选放大器的共模抑制比。当电阻比率误差不为零时,如图2所示,电路模抑制比可表示为:

当R2误差极小时,以上等式中的第二项可忽略不计且:

对于R2 = R4 = 10 kΩ,R1 = R3 = 10 kΩ且error = 1%的单位增益分立差动放大器,其共模抑制比约为46 dB。这比单片差动放大器(AMP03)的性能差得多,后者的共模抑制比如图3所示


图3. AMP03(单片差动放大器)共模抑制比与频率的关系


如上所示,因电阻不匹配导致的误差可能构成分立差动放大器的一大不足。但通过一些方法是可以优化这种电路的。


好办法助你解决问题


➤ a.在等式3中,差分增益与(R2/R1)之比成正比。因此,优化以上电路性能的一种方法就是尽可能将该放大器置于一种高增益配置中(在高增益设置中使用大电阻会引发噪声问题,同样需要解决)。


通过选择阻值更大的R2和R4(R2 = R4),以及阻值更小的R1和R3(R1 = R3),可获得的更高的增益,这样共模抑制比越佳。举例来说,当R2 = R4 = 10 kΩ、R1 = R3 = 1 kΩ且error = 0.1%时,则共模抑制比将得到改善,优于80 dB。对高增益配置,请选择IB极低、增益极高的放大器(如ADI公司出品的AD8551系列放大器),以降低增益误差。电路的增益误差和线性度是放大器性能的函数。


图4a. AD8605的共模抑制比(其中G = 1)


图4b.AD8605的共模抑制比(其中G = 10)


➤ b.选择公差更小和精度更高的电阻。电阻越匹配,共模抑制比越佳。例如,如果以上电路需要90 dB的共模抑制比,则电阻匹配公差应在0.02左右。这种情况下,电路的共模抑制比将不亚于某些高精度仪表放大器,只是它们的交流和直流特性更好。


图5a. OP1177的共模抑制比(其中G = 1)


图5b. OP1177的共模抑制比(其中G=10)


➤ c. 改善图1所示电路共模抑制比的另一种方法是使用机械微调电位计,如图6所示。


图6


借助这种方法,用户可使用公差较低的电阻,但需要定期进行调整。


➤ d. 作为对精度要求不高的电路的替代途径,可使用数字电位计,如图7所示。AD5235(一种非易失性存储器、双路 1024 位数字电位计)配合AD8628构成一种差动放大器,其增益为15(G = 15)。


通过使用电位计,能获得编程能力,可一步完成增益设置和微调。这种电路的另一优势在于,双电阻(AD5235)的温度系数为50 ppm,使电阻比率匹配更为方便。根据电路所需精度和公差,也可选择其它数字电位计。


图7


图8. 图7所示电路的共模抑制比与频率


➤ e. 使用双路或四路放大器构建共模抑制比更佳、高输入阻抗的仪表放大器。这是一种成本更高的解决方案,也是单片仪表放大器所用方法。应根据实际需要选择相应的放大器,比如更出色的BW、ISY和VOS,此类需求可能是仪表放大器所不能满足的。


自稳零放大器,如AD8628和AD855x系列是此类应用的最佳选择。这类放大器具有极高的直流精度,不会给输出增加任何误差。自稳零放大器具有长期稳定性,无需像某些系统那样反复进行校准。自稳零放大器的最低共模抑制比为 140 dB,因而在多数电路中,电阻匹配将成为限制因素。因此,用户最好根据上述指南来构建差动放大器并优化其性能。

你留“❤”,我送礼
▽▽▽
小编将从视频的点赞粉丝中随机抽取5位幸运儿送出ADI幸运小奖品
查看往期内容↓↓↓
亚德诺半导体 Analog Devices, Inc.(简称ADI)始终致力于设计与制造先进的半导体产品和优秀解决方案,凭借杰出的传感、测量和连接技术,搭建连接真实世界和数字世界的智能化桥梁,从而帮助客户重新认识周围的世界。
评论
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 102浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 43浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 55浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 153浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 221浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 115浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 122浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 412浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 186浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 182浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 198浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦