把嵌入式设备驱动比相亲,那总线就是红娘,设备是男方,驱动是女方.....

传感器技术 2020-03-02 00:00


一、platform 驱动的工作过程


platform模型驱动编程,需要实现platform_device(设备)与platform_driver(驱动)在platform(虚拟总线)上的注册、匹配,相互绑定,然后再做为一个普通的字符设备进行相应的应用,总之如果编写的是基于字符设备的platform驱动,在遵循并实现platform总线上驱动与设备的特定接口的情况下,最核心的还是字符设备的核心结构:cdev、 file_operations(他包含的操作函数接口)、dev_t(设备号)、设备文件(/dev)等,因为用platform机制编写的字符驱动,它的本质是字符驱动。


我们要记住,platform 驱动只是在字符设备驱动外套一层platform_driver 的外壳。


在一般情况下,2.6内核中已经初始化并挂载了一条platform总线在sysfs文件系统中。那么我们编写platform模型驱动时,需要完成两个工作:


a -- 实现platform驱动 

b -- 实现platform设备


然而在实现这两个工作的过程中还需要实现其他的很多小工作,在后面介绍。platform模型驱动的实现过程核心架构就很简单,如下所示:

 

platform驱动模型三个对象:platform总线、platform设备、platform驱动。

platform总线对应的内核结构:struct bus_type-->它包含的最关键的函数:match() (要注意的是,这块由内核完成,我们不参与)

platform设备对应的内核结构:struct platform_device-->注册:platform_device_register(unregister)

platform驱动对应的内核结构:struct platform_driver-->注册:platform_driver_register(unregister)

       

那具体platform驱动的工作过程是什么呢:


设备(或驱动)注册的时候,都会引发总线调用自己的match函数来寻找目前platform总线是否挂载有与该设备(或驱动)名字匹配的驱动(或设备),如果存在则将双方绑定;


如果先注册设备,驱动还没有注册,那么设备在被注册到总线上时,将不会匹配到与自己同名的驱动,然后在驱动注册到总线上时,因为设备已注册,那么总线会立即匹配与绑定这时的同名的设备与驱动,再调用驱动中的probe函数等;


如果是驱动先注册,同设备驱动一样先会匹配失败,匹配失败将导致它的probe函数暂不调用,而是要等到设备注册成功并与自己匹配绑定后才会调用。

 


二、实现platform 驱动与设备的详细过程




1、思考问题?

在分析platform 之前,可以先思考一下下面的问题:

a -- 为什么要用 platform 驱动?不用platform驱动可以吗?

b -- 设备驱动中引入platform 概念有什么好处?


现在先不回答,看完下面的分析就明白了,后面会附上总结。

 


2、platform_device 结构体 VS   platform_driver 结构体

这两个结构体分别描述了设备和驱动,二者有什么关系呢?先看一下具体结构体对比



前面提到,实现platform模型的过程就是总线对设备和驱动的匹配过程 。打个比方,就好比相亲,总线是红娘,设备是男方,驱动是女方:


a -- 红娘(总线)负责男方(设备)和女方(驱动)的撮合;    

b -- 男方(女方)找到红娘,说我来登记一下,看有没有合适的姑娘(汉子)—— 设备或驱动的注册

c -- 红娘这时候就需要看看有没有八字(二者的name 字段)匹配的姑娘(汉子)——match 函数进行匹配,看name是否相同;

d -- 如果八字不合,就告诉男方(女方)没有合适的对象,先等着,别急着乱做事 —— 设备和驱动会等待,直到匹配成功;

e -- 终于遇到八字匹配的了,那就结婚呗!接完婚,男方就向女方交代,我有多少存款,我的房子在哪,钱放在哪等等( struct resource    *resource),女方说好啊,于是去房子里拿钱,去给男方买菜啦,给自己买衣服、化妆品、首饰啊等等(int (*probe)(struct platform_device *) 匹配成功后驱动执行的第一个函数),当然如果男的跟小三跑了(设备卸载),女方也不会继续待下去的(  int (*remove)(struct platform_device *))。

 


3、设备资源结构体

在struct platform_device 结构体中有一重要成员 struct resource *resource


[cpp] view plain copy

1. struct resource {  

2.     resource_size_t start;  资源起始地址     

3.     resource_size_t end;   资源结束地址  

4.     const char *name;        

5.     unsigned long flags;   区分是资源什么类型的  

6.     struct resource *parent, *sibling, *child;  

7. };  

8.   

9. #define IORESOURCE_MEM        0x00000200  

10. #define IORESOURCE_IRQ        0x00000400     


flags 指资源类型,我们常用的是 IORESOURCE_MEM、IORESOURCE_IRQ  这两种。start 和 end 的含义会随着 flags而变更,如


a -- flags为IORESOURCE_MEM 时,start 、end 分别表示该platform_device占据的内存的开始地址和结束值; 

b -- flags为 IORESOURCE_IRQ   时,start 、end 分别表示该platform_device使用的中断号的开始地址和结束值; 


下面看一个实例:


[cpp] view plain copy

1. static struct  resource beep_resource[] =  

2. {  

3.     [0] = {  

4.             .start = 0x114000a0,  

5.         .end = 0x114000a0+0x4,  

6.             .flags = IORESOURCE_MEM,  

7.     },  

8.   

9.     [1] = {  

10.             .start = 0x139D0000,  

11.             .end = 0x139D0000+0x14,  

12.             .flags = IORESOURCE_MEM,  

13.     },  

14. };   


好酒好礼,五粮液十五酱!(点击进入)




4、将字符设备添加到platform的driver中


前面我们提到platform 驱动只是在字符设备驱动外套一层platform_driver 的外壳,下面我们看一下添加的过程:


[cpp] view plain copy

1. static struct file_operations hello_ops=  

2. {  

3.     .open = hello_open,  

4.     .release = hello_release,  

5.     .unlocked_ioctl = hello_ioctl,  

6. };  

7.   

8. static int hello_remove(struct platform_device *pdev)  

9. {  

10.     注销分配的各种资源  

11. }  

12.   

13. static int hello_probe(struct platform_device *pdev)  

14. {  

15.     1.申请设备号  

16.     2.cdev初始化注册,&hello_ops  

17.     3.从pdev读出硬件资源  

18.     4.对硬件资源初始化,ioremap,request_irq( )  

19. }  

20.   

21. static int hello_init(void)  

22. {  

23.     只注册 platform_driver  

24. }  

25.   

26. static void hello_exit(void)  

27. {  

28.     只注销 platform_driver  

29. }  


可以看到,模块加载和卸载函数仅仅通过paltform_driver_register()、paltform_driver_unregister() 函数进行 platform_driver 的注册和注销,而原先注册和注销字符设备的工作已经被移交到 platform_driver 的 probe() 和 remove() 成员函数中。



5、platform是如何匹配device和driver


这时就该总线出场了,系统为platform总线定义了一个bus_type 的实例platform_bus_type,其定义如下:


[cpp] view plain copy

1. struct bus_type platform_bus_type = {  

2.     .name        = "platform",  

3.     .dev_groups    = platform_dev_groups,  

4.     .match        = platform_match,  

5.     .uevent        = platform_uevent,  

6.     .pm        = &platform_dev_pm_ops,  

7. };  


其又是怎样工作的呢?在platform.c (e:\linux-3.14-fs4412\drivers\base)    31577    2014/3/31 中可以看到



[cpp] view plain copy

1. __platform_driver_register()  

2. {  

3.     drv->driver.bus = &platform_bus_type;     536行  

4. }  



在platform_bus_type 中调用 了platform_match:


[cpp] view plain copy

1. static int platform_match(struct device *dev, struct device_driver *drv)  

2. {  

3.     struct platform_device *pdev = to_platform_device(dev);  

4.     struct platform_driver *pdrv = to_platform_driver(drv);  

5.   

6.     匹配设备树信息,如果有设备树,就调用 of_driver_match_device() 函数进行匹配  

7.     if (of_driver_match_device(dev, drv))  

8.         return 1;  

9.   

10.   

11.     匹配id_table  

12.     if (pdrv->id_table)  

13.         return platform_match_id(pdrv->id_table, pdev) != NULL;  

14.   

15.     最基本匹配规则  

16.     return (strcmp(pdev->name, drv->name) == 0);  

17. }  



 6、解决问题

现在可以回答这两个问题了

a -- 为什么要用 platform 驱动?不用platform驱动可以吗?

b -- 设备驱动中引入platform 概念有什么好处?


引入platform模型符合Linux 设备模型 —— 总线、设备、驱动,设备模型中配套的sysfs节点都可以用,方便我们的开发;当然你也可以选择不用,不过就失去了一些platform带来的便利;


设备驱动中引入platform 概念,隔离BSP和驱动。在BSP中定义platform设备和设备使用的资源、设备的具体匹配信息,而在驱动中,只需要通过API去获取资源和数据,做到了板相关代码和驱动代码的分离,使得驱动具有更好的可扩展性和跨平台性。

 


三、实例



这是一个蜂鸣器的驱动,其实前面已经有解析 Linux 字符设备驱动开发基础(二)—— 编写简单 PWM 设备驱动, 下面来看一下,套上platform 外壳后的程序:



1、device.c



[cpp] view plain copy

1. #include <linux/module.h>  

2. #include <linux/device.h>  

3. #include <linux/platform_device.h>  

4. #include <linux/ioport.h>  

5.   

6. static struct resource beep_resource[] =  

7. {  

8.     [0] ={  

9.         .start = 0x114000a0,  

10.         .end =  0x114000a0 + 0x4,  

11.         .flags = IORESOURCE_MEM,  

12.     },  

13.   

14.     [1] ={  

15.         .start = 0x139D0000,  

16.         .end =  0x139D0000 + 0x14,  

17.         .flags = IORESOURCE_MEM,  

18.     }  

19. };  

20.   

21. static void hello_release(struct device *dev)  

22. {  

23.     printk("hello_release\n");  

24.     return ;  

25. }  

26.   

27.   

28.   

29. static struct platform_device hello_device=  

30. {  

31.     .name = "bigbang",  

32.     .id = -1,  

33.     .dev.release = hello_release,  

34.     .num_resources = ARRAY_SIZE(beep_resource),  

35.     .resource = beep_resource,  

36. };  

37.   

38. static int hello_init(void)  

39. {  

40.     printk("hello_init");  

41.     return platform_device_register(&hello_device);  

42. }  

43.   

44. static void hello_exit(void)  

45. {  

46.     printk("hello_exit");  

47.     platform_device_unregister(&hello_device);  

48.     return;  

49. }  

50.   

51. MODULE_LICENSE("GPL");  

52. module_init(hello_init);  

53. module_exit(hello_exit);  


 


2、driver.c



[cpp] view plain copy

1. #include <linux/module.h>  

2. #include <linux/fs.h>  

3. #include <linux/cdev.h>  

4. #include <linux/device.h>  

5. #include <linux/platform_device.h>  

6. #include <asm/io.h>  

7.   

8. static int major = 250;  

9. static int minor=0;  

10. static dev_t devno;  

11. static struct class *cls;  

12. static struct device *test_device;  

13.            

14. #define TCFG0         0x0000                 

15. #define TCFG1         0x0004                              

16. #define TCON          0x0008               

17. #define TCNTB0        0x000C            

18. #define TCMPB0        0x0010             

19.   

20. static unsigned int *gpd0con;  

21. static void *timer_base;  

22.   

23. #define  MAGIC_NUMBER    'k'  

24. #define  BEEP_ON    _IO(MAGIC_NUMBER    ,0)  

25. #define  BEEP_OFF   _IO(MAGIC_NUMBER    ,1)  

26. #define  BEEP_FREQ   _IO(MAGIC_NUMBER   ,2)  

27.   

28. static void fs4412_beep_init(void)  

29. {     

30.     writel ((readl(gpd0con)&~(0xf<<0)) | (0x2<<0),gpd0con);  

31.     writel ((readl(timer_base +TCFG0  )&~(0xff<<0)) | (0xff <<0),timer_base +TCFG0);   

32.     writel ((readl(timer_base +TCFG1 )&~(0xf<<0)) | (0x2 <<0),timer_base +TCFG1 );   

33.   

34.     writel (500, timer_base +TCNTB0  );  

35.     writel (250, timer_base +TCMPB0 );  

36.     writel ((readl(timer_base +TCON )&~(0xf<<0)) | (0x2 <<0),timer_base +TCON );   

37. }  

38.   

39. void fs4412_beep_on(void)  

40. {  

41.     writel ((readl(timer_base +TCON )&~(0xf<<0)) | (0x9 <<0),timer_base +TCON );  

42. }  

43.   

44. void fs4412_beep_off(void)  

45. {  

46.     writel ((readl(timer_base +TCON )&~(0xf<<0)) | (0x0 <<0),timer_base +TCON );  

47. }  

48.   

49. static void beep_unmap(void)  

50. {  

51.         iounmap(gpd0con);  

52.         iounmap(timer_base);  

53. }  

54.   

55. static int beep_open (struct inode *inode, struct file *filep)  

56. {  

57.     fs4412_beep_on();  

58.     return 0;  

59. }  

60.   

61. static int beep_release(struct inode *inode, struct file *filep)  

62. {  

63.      fs4412_beep_off();  

64.      return 0;  

65. }  

66.   

67. #define BEPP_IN_FREQ 100000  

68. static void beep_freq(unsigned long arg)  

69. {  

70.     writel(BEPP_IN_FREQ/arg, timer_base +TCNTB0  );  

71.     writel(BEPP_IN_FREQ/(2*arg), timer_base +TCMPB0 );  

72.   

73. }  

74.   

75. static long beep_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)  

76. {  

77.     switch(cmd)  

78.     {  

79.         case BEEP_ON:  

80.             fs4412_beep_on();  

81.             break;  

82.         case BEEP_OFF:  

83.             fs4412_beep_off();  

84.             break;  

85.         case BEEP_FREQ:  

86.             beep_freq( arg );  

87.             break;  

88.         default :  

89.             return -EINVAL;  

90.     }  

91.     return 0;  

92. }  

93.   

94. static struct file_operations beep_ops=  

95. {  

96.     .open     = beep_open,  

97.     .release = beep_release,  

98.     .unlocked_ioctl      = beep_ioctl,  

99. };  

100.   

101. static int beep_probe(struct platform_device *pdev)  

102. {  

103.     int ret;      

104.     printk("match ok!");  

105.       

106.     gpd0con = ioremap(pdev->resource[0].start,pdev->resource[0].end - pdev->resource[0].start);  

107.     timer_base = ioremap(pdev->resource[1].start, pdev->resource[1].end - pdev->resource[1].start);  

108.   

109.     devno = MKDEV(major,minor);  

110.     ret = register_chrdev(major,"beep",&beep_ops);  

111.   

112.     cls = class_create(THIS_MODULE, "myclass");  

113.     if(IS_ERR(cls))  

114.     {  

115.         unregister_chrdev(major,"beep");  

116.         return -EBUSY;  

117.     }  

118.   

119.     test_device = device_create(cls,NULL,devno,NULL,"beep");//mknod /dev/hello  

120.     if(IS_ERR(test_device))  

121.     {  

122.         class_destroy(cls);  

123.         unregister_chrdev(major,"beep");  

124.         return -EBUSY;  

125.     }  

126.       

127.     fs4412_beep_init();  

128.       

129.     return 0;  

130. }  

131.   

132. static int beep_remove(struct platform_device *pdev)  

133. {  

134.     beep_unmap();  

135.     device_destroy(cls,devno);  

136.     class_destroy(cls);   

137.     unregister_chrdev(major,"beep");  

138.   

139.     return 0;  

140. }  

141.   

142.   

143. static struct platform_driver beep_driver=  

144. {  

145.     .driver.name = "bigbang",  

146.     .probe = beep_probe,  

147.     .remove = beep_remove,  

148. };  

149.    

150.   

151. static int beep_init(void)  

152. {  

153.     printk("beep_init");  

154.       

155.     return platform_driver_register(&beep_driver);  

156. }  

157.   

158. static void beep_exit(void)  

159. {  

160.     printk("beep_exit");  

161.     platform_driver_unregister(&beep_driver);  

162.       

163.     return;  

164. }  

165.   

166.   

167. MODULE_LICENSE("GPL");  

168. module_init(beep_init);  

169. module_exit(beep_exit); 




3、makefile   



[cpp] view plain copy

1. ifneq  ($(KERNELRELEASE),)  

2. obj-m:=device.o driver.o  

3. $(info "2nd")  

4. else  

5. #KDIR := /lib/modules/$(shell uname -r)/build  

6. KDIR := /home/fs/linux/linux-3.14-fs4412  

7. PWD:=$(shell pwd)  

8. all:  

9.     $(info "1st")  

10.     make -C $(KDIR) M=$(PWD) modules  

11. clean:  

12.     rm -f *.ko *.o *.symvers *.mod.c *.mod.o *.order  

13. endif  


 


4、test.c




[cpp] view plain copy

1. #include <sys/types.h>  

2. #include <sys/stat.h>  

3. #include <fcntl.h>  

4. #include <stdio.h>  

5.   

6. main()  

7. {  

8.     int fd,i,lednum;  

9.   

10.     fd = open("/dev/beep",O_RDWR);  

11.     if(fd<0)  

12.     {  

13.         perror("open fail \n");  

14.         return ;  

15.     }  

16.       

17.     sleep(10);  

18.     close(fd);  

19. } 


  来源:玩转单片机


免责声明:本文系网络转载,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容!本文内容为原作者观点,并不代表本公众号赞同其观点和对其真实性负责。

 
  

为您发布产品,请点击“阅读原文”

传感器技术 制造业的未来是智能化,智能化的基础就是传感器; 互联网的方向是物联网,物联网的基石也是传感器; 关注传感器技术,获得技术资讯、产品应用、市场机会,掌握最黑科技,为中国工业导航。
评论
  • 2024年12月3日至5日,中国电信2024数字科技生态大会在广州举行,通过主题峰会、多场分论坛、重要签约及合作发布等环节,与合作伙伴共绘数字科技发展新愿景。紫光展锐作为中国电信的战略合作伙伴受邀参会,全面呈现了技术、产品创新进展,以及双方在多领域的合作成果。紫光展锐董事长马道杰受邀出席大会主论坛,并在大会期间发表视频致辞。  深化战略合作,共建数字未来马道杰董事长在视频致辞中指出,紫光展锐作为世界一流芯片设计企业,依托在芯片、通信和软硬件集成领域的深厚积累,与中国电信密切合
    紫光展锐 2024-12-05 14:04 15浏览
  • 应用环境与客户需求蓝牙设备越来越普及,但在高密度使用环境下,你知道里面潜藏的风险吗?用户在使用蓝牙配件(如键盘、鼠标和耳机)时,经常面临干扰问题,这主要是因为蓝牙设备使用的2.4GHz频段与许多其他无线设备(如Wi-Fi、Thread等)重迭,导致频段拥挤,进而增加干扰的可能性。【常见干扰情境】客服中心:客服中心通常有大量的工作站,每个工作站可能都配备有蓝牙键盘、鼠标和耳机。由于这些设备都使用4GHz频段,客服中心内部的频段拥挤会增加讯号干扰的可能性。再加上中心内部可能有多个无线网络设备和其他电
    百佳泰测试实验室 2024-12-05 16:17 13浏览
  • 这个设计的目标是产生一个隔离的DAC输出。12V供电,产生0~5V的输出。达到10000约13.3位的分辨率。要求DAC输出在改变设置后1S内能稳定。需要能长时间保持稳定和低噪声。能达到要求的DAC只能是14位以上的。价格较贵。通常是I2C或SPI接口,实现隔离需要多个通路。对于I2C接口,实现数据线双向隔离也有难度。考虑直接使用单片机PWM输出,配合光耦隔离,加上滤波实现。如图,PWM信号直接驱动光耦的二极管,PWM为高时,TL431被供电,产生 2.5V电压。PWM为低时,输出被下拉到地。这
    southcreek 2024-12-04 16:32 2浏览
  • 在电子工程领域,高速PCB设计是一项极具挑战性和重要性的工作。随着集成电路的迅猛发展,电路系统的复杂度和运行速度不断提升,对PCB设计的要求也越来越高。在这样的背景下,我有幸阅读了田学军老师所著的《高速PCB设计经验规则应用实践》一书,深感受益匪浅。以下是我从本书中学习到的新知识和经验分享,重点涵盖特殊应用电路的PCB设计、高速PCB设计经验等方面。一、高速PCB设计的基础知识回顾与深化 在阅读本书之前,我对高速PCB设计的基础知识已有一定的了解,但通过阅读,我对这些知识的认识得到了进一步的深
    金玉其中 2024-12-05 10:01 150浏览
  • 引言在科普介绍文章《IPv6协议—互联网通信协议第六版》中介绍了IPv6协议,这次的科普主题是ICMPv6(Internet Control Message Protocol version 6),它作为IPv6网络中的核心协议之一,是网络通信中不可或缺的一部分。ICMPv6的设计继承了IPv4中ICMPv4协议的基本功能,然而,它不仅仅是IPv6中错误报告和诊断工具,更在IPv6网络的运行中扮演了重要角色。与IPv4不同,IPv6不再依赖ARP(地址解析协议)来解析网络节点的物理地址,而是通过
    北汇信息 2024-12-04 14:04 14浏览
  • 测试过程和结果由上海晶珩工程师提供,喜欢的小伙伴记得点赞转发噢~温度散热性能对比1.同样运行条件下,CM4与CM5运行温度及功耗对比(不带散热片)1.1硬件配置Raspberry Pi CM4+Raspberry Pi CM4 IO Board Raspberry Pi CM5+Raspberry Pi CM5 IO Board官方电源 网线 恒温箱1.2软件配置系统:2024-07-04-raspios-bookworm-arm64.img测试脚本:每5秒记录一次cpu温度和频率,也
    树莓派开发者 2024-12-04 10:57 7浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 132浏览
  • 在阅读了《高速PCB设计经验规则应用实践》后,对于PCB设计的布局经验有了更为深入和系统的理解。该书不仅详细阐述了高速PCB设计中的经验法则,还通过实际案例和理论分析,让读者能够更好地掌握这些法则并将其应用于实际工作中。布局是走线的基础,预先的规划再到叠层的选择,电源和地的分配,信号网络的走线等等,对布局方面也是非常的关注。布局规划的重要性: 在PCB设计中,布局规划是至关重要的一步。它直接影响到后续布线的难易程度、信号完整性以及电磁兼容性等方面。因此,在进行元件布局之前,我们必须对PCB的平
    戈壁滩上绽放 2024-12-05 19:43 13浏览
  • 将串口接收配置为 DMA方式,DMA 使用 DMA_CIRCULAR 模式工作。串口接收的数据实际上构成循环队列。 定义一个结构Comm_typedef 结构体中包含指向接收到的第一字节位置chrchr,最后一字节位置 lastchr 接收缓冲区长度 rlen 指向接收缓冲区指针 *pRxBuf 指向使用的串口句柄指针*pUart, 指向使用的DMA串口接收句柄指针 *pRx 指向DMA串口发送指针*pTx 检查接收到的字节数的函数 CheckRsv 和串口处理函数 Parse#ifndef
    southcreek 2024-12-04 15:23 0浏览
  • CS5466AUUSB-C  (2lanes)to HDMI2.1 8K@30HZ(4K@144) +PD3.1  CS5563DP  (4lanes) to HDMI2.1 10k@60Hz CS5565USB-C  (4lanes) to HDMI2.1 10k@60Hz CS5569USB-C (4lanes) to HDMI2.1 10k@60Hz +PD3.1CS5228ANDP++ to HDMI(4K
    QQ1540182856 2024-12-05 15:56 74浏览
  • 现在最热门的AI PC,泛指配备了人工智能AI的个人电脑,虽然目前的AI功能大多仅运用于增加个人电脑的运算力及用户使用体验。然而,各家AI PC厂商/品牌商却不约而同针对Webcam的AI功能大作文章,毕竟这是目前可以直接让消费者感受到、最显著、也是最有感觉的应用情境!目前各家推出Webcam 的AI功能包括有:● 背景虚化● 面部识别和追踪。● 自动调节● 虚拟化和滤镜● 安全和隐私面临的困境:惊吓大于惊喜的AI优化调校由于每款AI PC的相机都有自己的设定偏好及市场定位,一旦经过AI的优化调
    百佳泰测试实验室 2024-12-05 15:30 15浏览
  • 延续前一篇「抢搭智慧家庭生态圈热潮(一) 充满陷阱的产品介绍」系列文章,购买智能家电时需留意是否标有Works With Alexa (WWA)标章,然而,即使有了WWA标章后,产品难道就不会发生问题了吗?本篇由百佳泰将重点探讨在Alexa智能家居设备应用的实验中所遭遇到的问题。智能家庭隐忧浮现:智能家电APP使用状态不同步在先前的文章中,我们有提过建构Alexa智能家庭的三个主要元素:Alexa Built-in Devices(ABI)、Alexa Connected Device,以及Al
    百佳泰测试实验室 2024-12-05 15:26 10浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦