一文读懂自动驾驶多模态传感器融合

智驾最前沿 2022-04-20 08:00

--后台回复“40429--

--领取《汽车驾驶自动化分级》(GB/T 40429-2021)--

多模态融合是感知自动驾驶系统的一项基本任务,最近引起了许多研究人员的兴趣。然而,由于原始数据噪声大、信息利用率低以及多模态传感器的无对准,达到相当好的性能并非易事。本文对现有的基于多模态自动驾驶感知任务方法进行了文献综述。分析超过50篇论文,包括摄像头和激光雷达,试图解决目标检测和语义分割任务。与传统的融合模型分类方法不同,作者从融合阶段的角度,通过更合理的分类法将融合模型分为两大类,四小类。此外,研究了当前的融合方法,就潜在的研究机会展开讨论。

最近,用于自动驾驶感知任务的多模态融合方法发展迅速,其从跨模态特征表示和更可靠的模态传感器,到更复杂、更稳健的多模态融合深度学习模型和技术。然而,只有少数文献综述集中在多模态融合方法本身的方法论上,大多数文献都遵循传统规则,将其分为前融合、深度(特征)融合和后融合三大类,重点关注深度学习模型中融合特征的阶段,无论是数据级、特征级还是提议级。首先,这种分类法没有明确定义每个级别的特征表示。其次,它表明,激光雷达和摄像头这两个分支在处理过程中始终是对称的,模糊了激光雷达分支中融合提议级特征和摄像头分支中融合数据级特征的情况。综上所述,传统的分类法可能是直观的,但对于总结最近出现的越来越多的多模态融合方法来说却很落后,这使得研究人员无法从系统的角度对其进行研究和分析。

如图是自动驾驶感知任务的示意图:

深度学习模型仅限于输入的表示。为了实现该模型,需要在数据输入模型之前,通过一个复杂的特征提取器对原始数据进行预处理。

至于图像分支,大多数现有方法保持与下游模块输入的原始数据相同的格式。然而,激光雷达分支高度依赖于数据格式,这种格式强调不同的特性,并对下游模型设计产生巨大影响。因此,这里将其总结为基于点、基于体素和基于二维映射的点云数据格式,以适应异构深度学习模型。

数据级融合或前融合方法,通过空间对齐直接融合不同模式的原始传感器数据。特征级融合或深度融合方法通过级联或元素相乘在特征空间中混合跨模态数据。目标级融合方法将各模态模型的预测结果结合起来,做出最终决策。

一种新的分类法,将所有融合方法分为强融合和弱融合,如图展示了二者之间的关系:

为性能比较,KITTI benchmark的3D检测和鸟瞰目标检测。如下两个表分别给出BEV和3D的KITTI测试数据集上多模态融合方法的实验结果。

根据激光雷达和摄像头数据表示的不同组合阶段,将强融合再分为前融合、深度融合、后融合和非对称融合四类。作为研究最多的融合方法,强融合近年来取得了许多杰出的成就。

如图所示:强融合的每个小类都高度依赖于激光雷达点云,而不是摄像头数据。

前融合。数据级融合是一种通过原始数据级的空间对齐和投影直接融合每个模态数据的方法,与之不同的是,前融合在数据级是融合激光雷达数据,在数据级或特征级则融合摄像头数据。一个例子如图所示:

在激光雷达分支,点云可以是有反射图、体素化张量、前视图/距离视图/鸟瞰视图以及伪点云等形式。尽管所有这些数据都具有不同的内在特征,与激光雷达主干网高相关,但除了伪点云之外,大多数据通过基于规则的处理生成。此外,与特征空间嵌入相比,该阶段的数据仍然具有可解释性,因此所有这些激光雷达数据表示都直观可视。

对于图像分支,严格的数据级定义应该只包含RGB或灰度等数据,缺乏通用性和合理性。与前融合的传统定义相比,摄像头数据放松为数据级和特征级数据。特别是,这里将有利于三维目标检测的图像语义分割任务结果作为特征级表示,因为这些“目标级”特征与整个任务的最终目标级提议不同。

深度融合。深度融合方法在激光雷达分支的特征级对跨模态数据融合,但在图像分支的数据级和特征级做融合。例如,一些方法使用特征提取器分别获取激光雷达点云和摄像头图像的嵌入表示,并通过一系列下游模块将特征融合到两种模式中。然而,与其他强融合方法不同,深度融合有时以级联方式融合特征,这两种方法都利用原始和高级语义信息。深度融合的一个例子如图所示:

后融合。后融合,也称为目标级融合,指的是融合每个模态中流水线结果的方法。例如,一些后融合方法利用激光雷达点云分支和摄像头图像分支的输出,并基于两种模式的结果进行最终预测。请注意,两个分支提议的数据格式应与最终结果相同,但在质量、数量和精度上有所不同。后融合是一种多模态信息优化最终提议的集成方法(ensemble method)。如图是后融合的一个例子:

非对称融合。除了早融合、深度融合和后融合外,一些方法以不同的权限处理跨模态分支,因此融合一个分支的目标级信息和其他分支的数据级或特征级信息,定义为非对称融合。强融合的其他方法将两个分支视为似乎相等的状态,非对称融合至少有一个分支占主导地位,而其他分支提供辅助信息来执行最终任务。如图是非对称融合的一个例子:可能具有提议的相同提取特征,但非对称融合只有来自一个分支的一个提议,而后融合有来自所有分支的提议。

与强融合不同,弱融合方法不会以多种方式直接从分支融合数据/特征/目标,而是以其他方式操作数据。基于弱融合的方法通常使用基于规则的方法来利用一种模态数据作为监督信号,以指导另一模态的交互。如图展示了弱融合模式的基本框架:

有可能图像分支中CNN的2D提议导致原始激光雷达点云出现截锥体(frustum)。然而,与图像特征组合非对称融合不同,弱融合直接将选择的原始激光雷达点云输入到激光雷达主干网,以输出最终提议。

有些工作不能简单地定义为上述任何类型的融合,在整个模型框架中采用多种融合方法,例如深度融合和后融合的结合,也有将前融合和深度融合结合在一起。这些方法从模型设计看存在冗余,这不是融合模块的主流。

待解决的问题有一些分析。

当前的融合模型面临着错对齐和信息丢失的问题。此外,平融合(flat fusion)操作也阻止了感知任务性能的进一步提高。总结一下:

  • 错对齐和信息丢失:传统的前融合和深度融合方法利用外部标定矩阵将所有激光雷达点直接投影到相应的像素,反之亦然。然而,由于传感器噪声,这种逐像素对齐不够精确。因此,可以采取周围的信息作为补充,会产生更好的性能。此外,在输入和特征空间的转换过程中,还存在其他一些信息损失。通常,降维操作的投影不可避免地会导致大量信息丢失,例如,将3-D激光雷达点云映射到2-DBEV图像。将两个模态数据映射到另一个专门为融合设计的高维表示,可以有效地利用原始数据,减少信息损失。

  • 更合理的融合操作:级联和元素相乘这些简单的操作可能无法融合分布差异较大的数据,难以弥合两个模态之间的语义鸿沟。一些工作试图用更复杂的级联结构来融合数据并提高性能。

前视图单帧图像是自动驾驶感知任务的典型场景。然而,大多数框架利用有限的信息,没有详细设计辅助任务来进一步理解驾驶场景。总结一下:

  • 采用更多的潜在信息:现有方法缺乏对多维度和来源信息的有效利用。其中大多数都集中在前视图的单帧多模态数据上。其他有意义的信息还有语义、空间和场景上下文信息。一些模型试图用图像语义分割任务结果作为附加特征,而其他模型可能利用神经网络主干中间层的特征。在自动驾驶场景中,许多明确语义信息的下游任务可能会极大地提高目标检测任务的性能。例如车道检测、语义分割。因此,未来的研究可以通过各种下游任务(如检测车道、交通灯和标志)共同构建一个完整的城市场景的认知框架,帮助感知任务的表现。此外,当前的感知任务主要依赖于忽略时间信息的单一框架。最近基于激光雷达的方法结合了一个帧序列来提高性能。时间序列信息包含序列化的监控信号,与单帧方法相比,它可以提供更稳健的结果。

  • 表征学习的自监督:相互监督的信号自然地存在于从同一个真实世界场景但不同角度采样的跨模态数据中。然而,由于缺乏对数据的深入理解,目前无法挖掘出各模态之间的协同关系。未来的研究可以集中在如何利用多模态数据进行自监督学习,包括预训练、微调或对比学习。通过实施这些最先进的机制,融合模型将加深对数据的理解并取得更好的结果。

域偏差和数据分辨率与真实场景和传感器高相关。这些缺陷阻碍了自动驾驶深度学习模型的大规模训练和实施。

  • 域偏差:在自主驾驶感知场景中,由不同传感器提取的原始数据伴随着域相关特征。不同的摄像头系统有其光学特性,而激光雷达可能因机械激光雷达和固态激光雷达而不同。更重要的是,数据本身可能是有域偏差的,例如天气、季节或地理位置。因此,检测模型无法顺利适应新的场景。由于泛化失败,这些缺陷妨碍大规模数据集的收集和原始训练数据可重用性。

  • 分辨率冲突:来自不同模式的传感器通常具有不同的分辨率。例如,激光雷达的空域密度明显低于图像的空域密度。无论采用何种投影方法,由于无法找到对应关系,一些信息被消除。这可能导致模型被一个特定模态的数据所主导,无论是特征向量的分辨率不同还是原始信息的不平衡。

转载自计算机视觉深度学习和自动驾驶,文中观点仅供分享交流,不代表本公众号立场,如涉及版权等问题,请您告知,我们将及时处理。
-- END --

智驾最前沿 「智驾最前沿」深耕自动驾驶领域技术、资讯等信息,解读行业现状、紧盯行业发展、挖掘行业前沿,致力于助力自动驾驶发展与落地!公众号:智驾最前沿
评论
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 604浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 278浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 115浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 180浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 143浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 207浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 360浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 109浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 138浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 137浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 42浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 184浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦