利用中红外氮化硅波导传感器检测VOC气体

原创 MEMS 2022-04-17 00:00

据麦姆斯咨询报道,近日,美国德克萨斯农工大学(Texas A&M University)的一支研究团队在Scientific Reports期刊上发表了利用中红外氮化硅(SiN)波导传感器检测挥发性有机化合物(VOC)的论文,该团队开发的新型波导传感器能够为健康、农业和环境等应用监测多种气体分析物。


图1(a)带有聚二甲基硅氧烷(PDMS)室的SiN波导传感器;(b)SiN波导的SEM顶部图像;(c)来自单个SiN波导的模式图。


VOC检测对于从健康诊断到环境和工业监测的各种应用至关重要。VOC分析通常使用两种通用方法:一种基于气相色谱质谱联用(GC-MS)等分析技术;另一种涉及固态传感器,基于金属氧化物半导体(MOS)、电化学(EC)或光离子化检测(PID)。

GC-MS可以提供准确的气体分析,但系统体积庞大,因此不适合即时使用(POU)和实时应用。反过来,固态化学传感器具有很高的灵敏度和便携性,但在区分VOC方面的选择性较低。作为传统固态传感器的替代品,中红外(mid-IR)传感可以通过测量VOC的特征吸收和指纹振动特征来提供高选择性。

然而,中红外吸收光谱需要台式光学设备,如傅里叶变换红外光谱(FTIR),这对于POU应用是不现实的。为了解决这个问题,研究人员开发了由光波导和其他芯片级光子元件组成的微型光子电路。然而,先前的方法使用了高折射率的波导材料,如Si和Ge,这会导致微弱的倏逝波,因此它们的灵敏度较低。研究人员还使用了硫族化合物材料,它们能够提供更强的倏逝场,但它们在潮湿环境下容易降解,因此需要在干燥的氮气或高真空条件下储存。

为了解决这个问题,本论文对使用SiN作为波导材料进行了研究。相比于Si(nSi = 3.4),SiN具有较低的折射率(nSiN = 1.94),可产生强倏逝波,因此具有更高的灵敏度,还具有优异的化学稳定性,可在环境湿度条件下重复使用。此外,SiN具有宽阔的红外透明窗口、低光学损耗以及与互补金属氧化物半导体(CMOS)工艺的高兼容性。

这些特性使SiN成为波导传感器的理想材料,能够在长期传感操作中实现可重复、可再现的VOC检测。然而,据本论文的作者们所知,先前关于SiN作为波导材料的研究工作主要是理论上的,或者集中在可见光范围内的波长实现传感功能,而不是信息量更丰富的中红外范围。

在本论文中,作者们设计并测试了用于检测VOC的由SiN波导组成的中红外传感器。采用低压化学气相沉积(LPCVD)制备的SiN薄膜具有较宽的中红外透明区和比Si(nSi = 3.4)等传统材料更低的折射率(nSiN = 2.0),这导致更强的倏逝波,因此该传感器具有更高的灵敏度,正如有限差分本征模(FDE)计算所证实的那样。

图2 SiN波导的制造过程及其与PDMS室的组装


图3 VOC检测测量的实验设置


图4(a)SiN和(b)Si波导在厚度T = 1和2 μm时的灵敏度与波长(λ)的关系


此外,通过在波长λ = 3.0–3.6 μm处的特征吸收测量,作者们在实验上证明了对三种VOC(丙酮、乙醇和异戊二烯)的原位监测。由于具有更强的倏逝场,SiN波导的灵敏度比Si波导提高了5倍。据作者们所知,这是第一次使用SiN波导进行片上(on-chip)中红外光谱测量以用于VOC检测。


图5 使用宽度为 10 µm和厚度为1 µm的SiN波导对脉冲VOC的实时中红外监测:(a)λ = 3.375 µm处的丙酮,(b)λ = 3.375 µm处的乙醇,和(c)λ = 3.400 µm处的异戊二烯。


图6 丙酮、乙醇和异戊二烯的中红外吸收光谱;(a–c)SiN波导测量结果;(d–f)NIST WebBook数据库中的光谱。


由于其与CMOS工艺的高兼容性,所提出的中红外SiN波导传感器可以与无线电子器件集成,并有望为健康、农业和环境应用提供一个用于气体分析物传感的紧凑型模块。

论文信息:
Zhou, J., Al Husseini, D., Li, J. et al. Detection of volatile organic compounds using mid-infrared silicon nitride waveguide sensors. Sci Rep 12, 5572 (2022).

https://doi.org/10.1038/s41598-022-09597-9

延伸阅读:
《环境气体传感器技术及市场趋势-2020版》
《盛思锐气体传感器SGP30产品分析》





MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 135浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 153浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 183浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 89浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 141浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 121浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 90浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 104浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 86浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 85浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 181浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 111浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 131浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 134浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 103浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦