深度解读实时示波器如何实现TDR阻抗测试!

射频百花潭 2022-04-14 17:00


    数字系统设计工程师正面临着信号速率越来越快,高速传输线的阻抗控制非常重要。俗话说,工欲善其事,必先利其器,要想板子跑得快,还需阻抗控制好,走线阻抗是影响信号完整性的一个非常关键的因素。如何验证测试电缆、连接器、PCB板、背板中差分和单端阻抗是否达到设计要求,成为生产商以及高速数字电路设计人员必须关注的问题。


    关于阻抗的测试,想必大家对都有一定的了解,要测阻抗,大家立刻会想到VNA矢量网络分析仪或取样示波器的TDR功能来测,本文将揭秘如何利用高精度实时示波器+TDR功能实现阻抗测试,下面的三个视频分别是利用实时示波器测单端阻抗、差分阻抗、线缆长度的测试方法。



视频一

实时示波器+TDR测单端阻抗。


视频二

实时示波器+TDR测差分阻抗。

视频三

实时示波器+TDR测线缆长度。


1

为什么要测阻抗?


随着计算机、通信系统、视频系统和网络系统中开发的时钟频率和数据速率越来越快,信号完整性越来越重要,如PCIE5.0的数据速率已经达到32Gb/s,USB4.0的信号速率已经达到40Gb/s。要传输这么高速率的信号,信号上升时间、定时、抖动或噪声等都会影响整个系统的可靠性。为保证信号完整性,必需了解和控制信号经过的传输线的阻抗。数据速率的越来越高,信号的上升时间也越来越快,阻抗不匹配和偏差可能会导致反射,当快上升沿的信号在电路板上遇到阻抗不连续的位置就会产生很大的反射,会降低信号质量,影响信号完整性。因此走线阻抗是影响高速信号完整性的一个非常关键的因素。对于高速电路,很重要的一点是要保证信号传输路径上阻抗的连续性,这样可以避免信号产生大的反射。因此需要测试高速电路板的信号传输路径上阻抗的变化情况,从而可以分析问题原因,更好地定位问题的根源,保证高质量的产品快速进入市场。

在高速信号电路设计中,经常采用差分传输模式,差分阻抗的测试不同于单端阻抗测试;另外,在高速信号电路中,多个相邻的信号之间会产生串扰。对PCB走线特别是差分走线的阻抗控制提出了更高的要求。如何验证差分阻抗是否达到设计要求成为高速设计的工程师关注的问题。目前验证电缆、连接器、PCB板、背板等传输线特性阻抗的最常用方法是TDR方法。


2

什么是TDR?

TDR是时域反射计英文(Time Domain Reflectometry)的第一字母缩写,时域反射计(TDR)用来测量信号在通过某类传输环境传导时引起的反射,如电路板走线、电缆、连接器、背板等。TDR是一种通用的时域测试技术,广泛应用于PCB、电缆、连接器、背板、IC等测试领域。TDR可测传输线的特性阻抗,并显示出每个阻抗不连续点的位置和特性(阻抗、感抗和容抗)


3

TDR原理

TDR就是通过向传输路径中发送一个阶跃脉冲信号,阶跃信号将沿着传输线传输,当传输路径中阻抗发生变化, 部分能量就会被反射, 剩余的能量会继续传输,利用仪器观测阶跃脉冲源输入点上的传输线信号,仪器上的波形以时间顺序显示入射和反射传播信号总和。只要知道发射波的幅度及测量反射波的幅度,就可以计算阻抗的变化。同时只要测量由发射波到反射波再到达发射点的时间差就可以计算阻抗变化的位置。


下图是传输线中的阻抗发生变化将导致阶跃脉冲信号的幅度变化。


4

TDR如何计算阻抗

反射系数ρ等于反射回来的电压除以输入电压,反射发生在阻抗不连续的位置。根据反射原理,可以获得待测位置的阻抗。下面的阻抗计算公式,其中Vreflected及Vincident 分别为反射波幅度及入射波幅度,Z为待测阻抗,Zref为TDR的参考阻抗,通常为50欧姆。从下图公式可以看出,当ρ=0时,待测阻抗为标准阻抗Zref;当ρ=1时,待测阻抗为无穷大,表示开路;当ρ=-1时,待测阻抗为0,表示短路。


因此利用示波器可以计算显示出传输线各个点的阻抗,可以在示波器的屏幕上显示一条 TDR阻抗曲线,曲线的每一点对应传输线上的每一点的特性阻抗,下图是利用高精度实时示波器测出的TDR阻抗曲线。


当传输线上存在寄生电容、电感(如过孔)时,在 TDR曲线上可以反映出寄生参数引起的阻抗不连续,而且这些阻抗不连续曲线可以等效为电容、电感或其组合的模型,因而TDR也可以用来进行互连建模。


5

TDR应用


TDR通过对反射现象的观察可以找到被测试线路中的不连续点,如短路、断路、过孔、走线宽度变化等。TDR设备不但可用于PCB走线、连接器、电缆等阻抗测量,还可以发现连接器中、PCB上的拐角和过孔、从连接器转到电路板,或从电路板转到IC封装阻抗不连续点或变化。TDR也可以支持测量PCB走线、线缆的长度。


6

TDR测量项目


TDR可支持的测量的项目如下:
  •  传输线特征阻抗

  •  差分阻抗

  •  单端阻抗

  •  串扰测试

  •  信号传播时延delay和时滞Skew

  •  寄生电感、寄生电容

  •  S 参数


7

差分TDR测量


高速设计大部分都是通过差分传输线实现的,要测差分走线,需差分TDR测量。差分阻抗是指在差分信号驱动下在两条线路中测量的阻抗。为提供真正的差分阻抗测量功能,TDR的两条通道中的每条通道提供了一个极性可选的TDR阶跃,通过这种方法,可以在模拟实际中差分信号,就像DUT 在真实的差分信号下运行一样。


8

TDR分辨率


TDR 测量可以有效地考察电路阻抗和信号完整性。许多因素影响着TDR 系统分辨率,即TDR最小的不连续点的距离间隔的能力。如果TDR 系统的分辨率不足,那么间隔很小或间隔紧密的不连续点可能会平滑地转化成波形中的一个畸变。这种效应不仅可能会隐藏某些不连续点,而且可能会导致阻抗读数不精确。上升时间、建立时间和脉冲畸变可能会明显影响TDR 系统的分辨率。电路中任意两个不连续点之间的物理间隔决定了在TDR 波形上彼此之间相对反射位置的接近程度。如果它们的之间的距离不到系统上升时间的一半,那么测量仪器无法区分出两个相邻的不连续点。下面的公式可以得出,阶跃脉冲的上升时间越快,可测的传输线长度越短,分辨率越高。

TDR上升沿时间和分辨率,解析两段不连续的主要规则。




9

TDR 精度


TDR 测量精度有许多因素影响,测试结果的精度以及重复性依赖于TDR 系统的阶跃响应、互连反射和被测传输线的损耗、TDR探头、阶跃幅度精度、基线校正和测量中使用的参考阻抗的精度、操作工程师的经验等。另外,不同的TDR设备和测量方法(包括温度、湿度、校准方式、测试人员、测试方法等)会影响测试结果的精度和重复性。


10

如何改变TDR上升时间


在大多数情况下,越快的上升时间越好,但在某些情况下,太快的上升时间在TDR 测量中会给出误导性结果。例如,利用上升时间为30ps 的TDR测试电路板上微带的阻抗时,会提供完美的分辨率。但是在30ps 上升时间时可能会产生大的反射。上升时间为1.5ns在实际运行中驱动的相同传输线可能会产生非常小的可以忽略不计的反射。测量和真实之间的这种差异可能会引发信号完整性问题。为了与实际信号保持一致,很多规范要求,阻抗测量时TDR的上升时间与实际信号保持一致,如USB2.0要求400ps的TDR上升时间,Infinband要求200ps的TDR上升时间等。改变TDR的上升时间有两种方法:第一种是外加不同上升时间的硬件滤波器来改变TDR的上升时间;第二种是利用示波器的Filter功能进行软件滤波改变TDR的上升时间得到相应的测试结果。



11

如何克服TDR测试中的多重反射现象


进行TDR测试时,可能会遇到芯片内部或PCB背板的各种复杂的走线情况所带来的多重反射现象。当被测走线上有多个阻抗不连续点时,信号在穿越每两个相邻的阻抗不连续点时都会产生反射,所有的反射信号会叠加在一起后反映在示波器上的波形畸变,测量精确下降。多重反射的存在导致工程师无法将测试波形结果与被测的走线相对应,利用TDR软件算法,将原始的TDR测试波形按照反射的情况进行分段,通过去卷积(De-convolution)算法可修正多重反射给测试带来的影响,还原真实的情况,从而得到与DUT走线相符合的真实阻抗测试结果。


下图中绿色波形是由于多重反射导致的测试波形,红色波形是经过软件修正后的波形。


12

TDR和S参数转换


TDR和S参数之间可以相互转换,TDR是时域响应,FFT后可以转换成频域的S参数。S参数是频域响应,测S参数时,实际上相当于给输入了不同频率的正弦波,得到对于所有正弦信号的响应值之后,然后进行IFFT逆傅里叶变换,就能得到时域上的冲激函数,把冲激函数积分,即可得到阶跃的TDR信号,下图是TDR/TDT测试S参数中的S11和S21与VNA测试结果的对比曲线图,红色是VNA测量的S参数曲线,蓝色是TDR得到的S参数曲线,从图看出测试结果有非常好的一致性。


13

TDR 探头


在TDR测试中,特别是PCB板的阻抗测试,需要通过探头将阶跃脉冲信号点测DUT以完成测试,TDR探头由探头前端、探头电缆等组成。TDR探测主要有三类:

  • 手持点测探头

  • SMA探头

  • MicroProbe微探头



14

实时示波器+TDR测阻抗方案


利用高精度实时示波器和上升时间为30ps的TDR阶跃脉冲产生模块可完成阻抗测试。由于TDR模块具有差分TDR脉冲源,可产生单端或者差分的阶跃脉冲信号,因此既可以支持单端阻抗的测试,又可对差分阻抗进行测试。另外,很多规范要求阻抗测量时TDR的上升时间与实际信号保持一致,实时示波器可通过Filter(滤波)功能改变上升时间,从而与实际信号的上升时间保持一致完成更真实的阻抗曲线测试。



15

实时示波器+TDR测试结果


利用高精度实时示波器配合TDR模块可完成单端阻抗、差分阻抗、线缆长度测试等。下图分别是单端阻抗、差分阻抗、电缆长度测试结果。



下图是利用实时示波器配合TDR探头完成单端阻抗测试。


下图是利用实时示波器配合TDR探头完成差分阻抗测试。


16

实时示波器和取样示波器阻抗测试结果对比


实时示波器+TDR模块测阻抗到底是否可信?实时示波器阻抗测试结果和取样示波器TDR阻抗测试结果是否有差异?结果一致性怎么样?我们利用DSA8300+80E04 和 MSO68B+TDR模块对同一个DUT进行了单端和差分阻抗的对比测试,并对测试结果数据进行比较,见下表。从表格可以看出,无论单端阻抗,还是差分阻抗,实时示波器MSO68B和取样示波器DSA8300的测试结果几乎一样,两种不同类型的示波器测试结果的一致性非常好。

DSA8300+80E04 和 MSO68B+TDR模块对同一个DUT单端阻抗对比测试结果,见下图,从下面的测试图可看出:DSA8300测试结果为49.90欧姆,MSO68B测得的结果是49.96欧姆,单端阻抗测试结果几乎一样。


DSA8300+80E04 和 MSO68B+TDR对同一个DUT差分阻抗对比测试结果,见下图,从下面的测试图可看出:DSA8300测试结果为99.43欧姆,MSO68B测得的结果是99.84欧姆,差分阻抗测试结果几乎相同。


17

总结


仿真工具设计高速电路,仿真加快了设计周期。但是仿真后,还需要测试验证仿真设计,传输线的阻抗测量是高速信号完整性非常重要的环节。本文详解了利用实时示波器配合TDR模块实现了单端阻抗,差分阻抗测试,并和取样示波器的TDR阻抗对比测试,其两者的测试结果几乎一样。


更多精彩测试干货,关注测试测量加油站

  

声明:


本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有。

投稿/招聘/推广/宣传 请加微信:15989459034

射频百花潭 国内最大的射频微波公众号,专注于射频微波/高频技术分享和信息传递!
评论
  • 概述随着工业4.0的深入推进,制造业对自动化和智能化的需求日益增长。传统生产线面临空间不足、效率低下、灵活性差等问题,尤其在现有工厂改造项目中,如何在有限空间内实现高效自动化成为一大挑战。此次项目的客户需要在现有工厂基础上进行改造,空间有限。为此,客户选择了SCARA型线性轴机器人作为执行设备。然而,SCARA机器人的高效运行离不开强大的控制系统支持。宏集凭借其先进的智能控制系统,为客户提供了高效、灵活的自动化解决方案,确保SCARA机器人在有限空间内发挥最大效能。一、客户需求在此次改造项目中,
    宏集科技 2025-03-06 11:27 120浏览
  • 案例1 2008款保时捷卡宴车行驶中发动机偶发熄火故障现象 一辆2008款保时捷卡宴车,搭载4.8 L 自然吸气发动机,累计行驶里程约为21万km。车主反映,该车行驶中发动机偶发熄火;重新起动,发动机能够起动着机,只是起动时间延长,且组合仪表上的发动机故障灯异常点亮。 故障诊断接车后试车,发动机起动及怠速运转正常。用故障检测仪检测,发动机控制单元(DME)中存储有故障代码“P0335 曲轴位置传感器A电路”,由此怀疑曲轴位置传感器信号偶尔异常,导致发动机熄火。用虹科Pico汽车示波器测
    虹科Pico汽车示波器 2025-03-05 11:00 62浏览
  • 配电自动化终端DTU(数据终端单元)在智能电网的建设中扮演着至关重要的角色,它通过信息采集与控制,实现配电线路的遥测、故障检测及远程操作,极大提升了供电可靠性和效率。在国网新规的推动下,采用多核异构处理器设计的DTU方案日益成为主流,其中实时核与控制核的协同工作,为配电系统的实时监控与高效管理提供了有力保障。在此背景下,飞凌嵌入式基于FET536-C核心板的RISC-V核DTU解决方案应运而生,凭借卓越的性能和灵活的多核架构,引领配电自动化进入全新时代。1. T536核心板的优势飞凌嵌入式FET
    飞凌嵌入式 2025-03-05 10:42 78浏览
  • 引言嘿,各位电动汽车的爱好者们!咱们今儿个就来聊聊电动汽车里那些“看不见,摸不着”,但又至关重要的零部件。要说电动汽车这玩意儿,那可真是科技含量满满,各种高精尖的技术都往里堆。但要让这些高科技玩意儿协同工作,稳定可靠地运转,那就得靠一些幕后英雄,比如说——电容器。你可能会想,电容器?这不就是电子电路里常见的元件嘛,能有多重要? 哎,你可别小瞧了这小小的电容器。在电动汽车的心脏地带——高压直流转换器(DC-DC转换器)里,车规级的电容器那可是扮演着举足轻重的角色。 今天,咱们就聚焦分析三星电机车规
    贞光科技 2025-03-05 17:02 90浏览
  • 在六西格玛项目中,团队的选择往往决定了最终的成败。合适的团队成员不仅能推动项目顺利进行,更能确保最终成果符合预期。因此,组建六西格玛团队时,必须挑选最合适的人才,确保他们具备必要的能力和特质。团队主管的关键特质每个精益六西格玛项目都需要一位主管来带领团队。他们不仅需要具备领导力,还要能够分析数据、制定策略,并与管理层和团队成员高效沟通。团队主管的核心职责包括:领导团队行动:能够激励成员,确保团队朝着既定目标前进。数据分析能力:精通数据处理和分析,能基于数据做出决策。沟通协调:能够在管理层和团队之
    优思学院 2025-03-06 12:51 98浏览
  • 随着自动驾驶技术的迅猛发展,构建高保真、动态的仿真场景成为了行业的迫切需求。传统的三维重建方法在处理复杂场景时常常面临效率和精度的挑战。在此背景下,3D高斯点阵渲染(3DGS)技术应运而生,成为自动驾驶仿真场景重建的关键突破。一、3DGS技术概述与原理1、3DGS的技术概述3DGS是一种基于3D高斯分布的三维场景表示方法。通过将场景中的对象转化为多个3D高斯点,每个点包含位置、协方差矩阵和不透明度等信息,3DGS能够精确地表达复杂场景的几何形状和光照特性。与传统的神经辐射场(NeRF)方法相比,
    康谋 2025-03-06 13:17 120浏览
  • 产品质量合格率偏低会引起质量成本(也称“劣质成本”)的大幅增加。质量成本通常分为内部损失成本和外部损失成本两部分。内部损失成本是指产品交付前因质量不合格造成的损失,包括返工、报废等;外部损失成本是指产品交付后因质量问题导致的损失,如退货、召回等。此外,质量问题还会影响生产效率,带来额外人工和停工损失。下面分别介绍各类损失的具体计算方法和公式。直接成本损失(内部故障成本)直接成本是由于产品在出厂前质量不合格所造成的看得见的损失。常见的直接损失包括返工、报废以及由此产生的额外原材料消耗等。返工成本:
    优思学院 2025-03-05 15:25 77浏览
  • 服务器应用环境与客户需求PCIe 5.0高速接口技术的成熟驱动着生成式AI与高效能运算等相关应用蓬勃发展。在随着企业对服务器性能的要求日益严苛,服务器更新换代的周期也持续加快。在此背景下,白牌与DIY(Do It Yourself)服务器市场迎来了新的发展契机,但同时也面临着更趋复杂的技术挑战。传统上,白牌与DIY服务器以其高度客制化与成本效益优势受到市场青睐。然而,随着PCIe 5.0等高速技术的导入,服务器系统的复杂度大幅提升,对组装技术与组件兼容性也就提出更高的要求。举个简单的例子来说,P
    百佳泰测试实验室 2025-03-06 17:00 47浏览
  • 文/Leon编辑/cc孙聪颖2025年全国两会进行时,作为“十四五”规划收官之年,本届两会释放出坚定目标、稳中求进、以进促稳等信号。其中,企业家们的建议备受关注,关系到民营经济在2025年的走向。作为国内科技制造业的“老兵”,全国人大代表、TCL集团创始人及董事长李东生在本届两会中提出三份代表建议,包括《关于优化中国科技制造业融资环境的建议》、《关于加强AI深度伪造欺诈管理的建议》和《关于降低灵活就业人员社会保险参保门槛的建议》,表现出对科技制造、AI发展和劳动者保障方面的关注。会后,李东生接受
    华尔街科技眼 2025-03-06 19:41 44浏览
  • 在当今竞争激烈的市场环境中,企业不仅需要优化成本,还需积极响应国家的能源政策,减少对环境的影响。提升工业能源效率正是实现这一双重目标的关键。中国近年来大力推进“双碳”目标(碳达峰、碳中和),并出台了一系列政策鼓励企业节能减排。通过宏集CODRA的Panorama解决方案,企业可以获得专为这一目标设计的SCADA工具,实时监控和调整所有工业设备的能耗。特别是其中的能源管理模块,能够有效分析数据,预防故障,避免能源浪费。Panorama的优化技术宏集CODRA提供的解决方案,尤其是Panorama
    宏集科技 2025-03-06 11:25 115浏览
  • ASL6328芯片支持高达 6.0 Gbps 运行速率的交流和直流耦合输入T-MDS 信号,具备可编程均衡和抖动清理功能。ASL6328 是一款单端口 HDMI/DVI 电平转换 / 中继器,具有重新定时功能。它包含 TypeC双模式 DP 线缆适配器寄存器,可用于识别线缆适配器的性能。抖动清理 PLL(锁相环)能够消除输入抖动,并完全重置系统抖动容限,因此能更好地满足更高数据速率下 HDMI 抖动合规性要求。设备的运行和配置可通过引脚设置或 I2C 总线实现。自动断电和静噪功能提供了灵活的电
    QQ1540182856 2025-03-06 14:26 86浏览
  • 文/Leon编辑/侯煜‍2008至2021年间,创维以高举高打的凌厉之势,果断进行投资,一度成为中国市场大屏OLED产业的旗手,引领着显示技术的发展方向。但近年来,创维在 OLED 领域的发展轨迹却逐渐模糊,态度陷入暧昧不明的混沌状态。究其根源,一方面,创维对过往的押注难以割舍,在技术革新与市场变化的浪潮中,不愿轻易推翻曾经的战略布局;另一方面,早期在大屏OLED 技术研发、市场推广等环节投入的巨额资金,已然形成沉没成本,极大地限制了创维在显示技术路线上的重新抉择。但市场瞬息万变,为适应激烈的行
    华尔街科技眼 2025-03-05 20:03 147浏览
  • 1. 背景在汽车电子系统测试中,CANoe作为主流的仿真测试工具,常需与云端服务器、第三方软件或物联网设备进行交互。随着CANoe与外部软件、服务器或设备交互越来越多,直接使用Socket进行通信往往不能满足使用需求,依托于CANoe 的连接功能集(Connectivity Feature Set),以及Distributed Object(DO)功能,可以仿真HTTP节点,实现设备与服务器等之间的通信,保证数据处理的可靠性和便捷性。本文详细解析如何利用CANoe搭建HTTP测试环境,并提供典型
    北汇信息 2025-03-05 11:56 87浏览
  • 多人同时共享相同无线网络,以下场景是否是您熟悉的日常?姐姐:「妈~我在房间在线上课,影音一直断断续续的怎么上课啊!」奶奶:「媳妇啊~我在在线追剧,影片一直卡卡的,实在让人生气!」除此之外,同时间有老公在跟客户开在线会议,还有弟弟在玩在线游戏,而妈妈自己其实也在客厅追剧,同时间加总起来,共有五个人同时使用这个网络!我们不论是在家里、咖啡厅、餐厅、商场或是公司,都会面临到周遭充斥着非常多的无线路由器(AP),若同时间每位使用者透过手机、平板或是笔电连接到相同的一个网络,可想而知网络上的壅塞及相互干扰
    百佳泰测试实验室 2025-03-06 16:50 42浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦