每个细分的详细内容请参考原文。 机器学习的未来 ML 研究社区正在出现一些有趣的研究方向,如果将它们结合起来可能会更加有趣。 首先,研究稀疏激活模型,比如稀疏门控专家混合模型(Sparsely-Gated MoE),展示了如何构建非常大容量的模型,其中对于任何给定的实例(如 2048 个专家中的两至三个),只有一部分模型被「激活」。 其次,研究自动化机器学习(AutoML),其中神经架构搜索(NAS)或进化架构搜索(EAS)等技术可以自动学习 ML 模型或组件的高效结构或其他方面以对给定任务的准确率进行优化。AutoML 通常涉及运行很多自动化实验,每个实验都可能包含巨量计算。 最后,以几个到几十个相关任务的适当规模进行多任务训练,或者从针对相关任务的大量数据训练的模型中迁移学习然后针对新任务在少量数据上进行微调,这些方式已被证明在解决各类问题时都非常有效。 一个非常有趣的研究方向是把以上三个趋势结合起来,其中在大规模 ML 加速器硬件上运行一个系统。目标是训练一个可以执行数千乃至数百个任务的单一模型。这种模型可能由很多不同结构的组件组成,实例(example)之间的数据流在逐实例的基础上是相对动态的。模型可能会使用稀疏门控专家混合和学习路由等技术以生成一个非常大容量的模型,但其中一个任务或实例仅稀疏激活系统中总组件的一小部分。 下图 1 描述了一个多任务、稀疏激活的机器学习模型。 每个组件本身可能正在运行一些类 AutoML 的架构搜索,以使组件的结构适应路由到它的数据类型。新的任务可以利用在其他任务上训练的组件,只要它有用就行。Jeff Dean 希望通过非常大规模的多任务学习、共享组件和学习路由,模型可以迅速地以高准确率来完成新任务,即使每个新任务的新实例相对较少。原因在于模型能够利用它在完成其他相关任务时已经获得的专业知识和内部表示。 构建一个能够处理数百万任务并学习自动完成新任务的单一机器学习是人工智能和计算机系统工程领域真正面临的巨大挑战。这需要机器学习算法、负责任的 AI(如公平性和可解释性)、分布式系统和计算机架构等很多领域的专业知识,从而通过构建一个能够泛化以在机器学习所有应用领域中独立解决新任务的系统,来推动人工智能领域的发展。 负责任的 AI 开发 虽然 AI 有能力在人们日常生活的方方面面提供帮助,但所有研究人员和从业人员应确保以负责任的方式开发相关方法,仔细审查偏见、公平性、隐私问题以及其他关于 AI 工具如何运作并影响他人的社会因素,并努力以适当的方式解决所有这些问题。 制定一套明确的原则来指导负责任的 AI 发展也很重要。2018 年,谷歌发布了一套 AI 准则,用于指导企业与 AI 相关的工作和使用。这套 AI 准则列出了需要考虑的重要领域,包括机器学习系统中的偏见、安全、公平、问责、透明性和隐私。近年来,其他机构和政府也纷纷效仿这一模式,发布了自己的 AI 使用准则。Jeff Dean 希望这种趋势能够延续下去,直到它不再是一种趋势,而成为所有机器学习研究和开发中遵循的标准。 Jeff Dean 对未来的展望 2010 年代的确是深度学习研究和取得进展的黄金十年。1956 年达特茅斯人工智能研讨会上提出的一些最困难的问题在这十年取得了长足进步。机器能够以早期研究人员希望的方式看到、听到和理解语言。核心领域的成功促使很多科学领域迎来重大进展,不仅智能手机更加智能,而且随着人们继续创建更复杂、更强大且对日常生活有帮助的深度学习模型,未来有了更多的可能性。得益于强大机器学习系统提供的帮助,人们将在未来变得更有创造力和拥有更强的能力。 原文链接:https://www.amacad.org/publication/golden-decade-deep-learning-computing-systems-applications