微信公众号:OpenCV学堂
关注获取更多计算机视觉与深度学习知识
YOLOX目标检测模型
https://arxiv.org/pdf/2107.08430.pdf
https://github.com/Megvii-BaseDetection/YOLOX
ONNX格式模型转与部署
https://github.com/Megvii-BaseDetection/YOLOX/tree/main/demo/ONNXRuntime
https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s.onnx
输入格式:1x3x640x640,默认BGR,无需归一化。
输出格式:1x8400x85
https://github.com/Megvii-BaseDetection/YOLOX/tree/main/demo
-GPU 3050Ti
-CPU i7 11代
-OS:Win10 64位
-OpenVINO2021.4
-ONNXRUNTIME:1.7-CPU
-OpenCV4.5.4
-Python3.6.5
-YOLOX
-TensorRT8.4.x
OpenVINO推理
TensorRT推理 - FP32
转威FP16
TensorRT推理 - FP16
总结
CPU上速度最快的是OpenVINO
GPU上速度最快的是TensorRT
扫码查看OpenCV+Pytorch系统化学习路线图
推荐阅读
CV全栈开发者说 - 从传统算法到深度学习怎么修炼
2022入坑深度学习,我选择Pytorch框架!
Pytorch轻松实现经典视觉任务
教程推荐 | Pytorch框架CV开发-从入门到实战
OpenCV4 C++学习 必备基础语法知识三
OpenCV4 C++学习 必备基础语法知识二
OpenCV4.5.4 人脸检测+五点landmark新功能测试
OpenCV4.5.4人脸识别详解与代码演示
OpenCV二值图象分析之Blob分析找圆
OpenCV4.5.x DNN + YOLOv5 C++推理
OpenCV4.5.4 直接支持YOLOv5 6.1版本模型推理
OpenVINO2021.4+YOLOX目标检测模型部署测试
比YOLOv5还厉害的YOLOX来了,官方支持OpenVINO推理