浅谈Linux内核的实时性优化

原创 Linux阅码场 2022-04-12 08:00


作者简介

邓世强,一线码农,从事通信行业,目前在一家通信公司担任内核工程师,日常喜欢钻研学习Linux内核知识。



阅码场目前已创建两个专业技术交流群,由阅码场资深讲师主持,主要是为了更好的技术交流与分享,两个群分别为:

彭伟林-阅码场内核性能与稳定性
甄建勇-Perf Monitor&Perf Counter

有意加入请私信客服小月(小月微信号:linuxer2016)



1.实时系统的概念 

1.1什么是实时操作系统

 

什么是实时操作系统?接触过嵌入式的小伙伴可能会知道,实时操作系统是指在嵌入式领域广泛应用的各类RTOS(Real Time Operating System)。其中最具代表性的有国外的μC/OS-IIIFreeRTOSVxworks等,国内的代表有RT-ThreadLiteOS
 


1:常见的实时操作系统


在这些众多的RTOS系统里面既有开源的也有商业的,同时还有一些是行业专用的,比如enea公司推出的OSE系统就是通信行业早期的基站设备应用比较广泛的系统。无论是开源或是商业,这类系统都有一个最显著的特点,就是它们都具有很高的实时性。也是因为这个特点,它们都被集中应用在了嵌入式领域,特别是工控领域,例如工业制造控制、导弹飞机导航、电力设备监控等。历史上有很多著名的航空航天设备都使用到了实时的操作系统。比如登陆火星的凤凰号、好奇号火星探测器,它们所采用的操作系统就是美国WindRiver公司推出的Vxworks那什么是系统的实时性呢?Linux系统在嵌入式领域也有大量使用,那Linux系统支不支持实时性呢?

1.2 Linux实时性、软实时和硬实时
 
实时性指的是一个操作系统能够在规定的时间点内完成指定的任务操作,一旦超过这个时间点会对整个系统带来不可估量的后果。与此相对的是一般操作系统,它更注重用户体验,系统偶尔卡顿不会给用户带来灾难性后果。实时性反映了一个系统行为控制的精准能力,具体体现在定时器的精准度高,中断响应及时以及系统的行为固定且可预估等。Linux系统最初是按照分时系统设计并推出的,再加上在历史版本中使用的调度算法目的是公平的分配和使用各种系统资源,保证CPU被各进程公平的使用,所以早期并不支持实时性。但是在后来的2.6版本开始,加入了内核抢占的功能,使它的实时性得到了提升,在某种程度上具备了软实时的能力。软实时指的是系统对于时限要求并不是十分的严格,在一些情况下允许系统超限完成。举个例子,我们在PC机上使用鼠标操作,偶尔会出现卡顿延迟,这种情况除了让我们抓狂影响使用体验之外并不会给我们带来严重的影响,大家平时在使用电脑时遇到鼠标图标转圈圈同时界面不响应操作就是一个例子。再比如视频信号采集,偶尔丢失几个数据帧,并不会对视频最后的播放带来严重的画面缺失。但是硬实时就不一样,它对操作系统的行为有着严格的时限要求,超出时限往往会带来灾难性后果。比如在我们日常生活中使用的汽车都配备了安全气囊,汽车在发生激烈碰撞时可能会在0.2s内停下,那就要求气囊在0.02s内充气完毕并弹出,超出这个时间乘客可能就会面临生命危险。再比如导弹防御系统,当敌方导弹来袭时拦截系统必须做出100%的精准反应并计算出弹道轨迹进行拦截,稍有延迟就会造成拦截失败,这种后果是不可接受的。这就是硬实时系统和软实时系统的区别。但是由于Linux系统内核过于庞大且模块众多,内核中仍然有不少影响实时性的因素,比如使用大量自旋锁、中断禁止、时钟粒度等,使其距离us级别的控制精度还有很大的距离。但是也不能因此认定Linux系统今后就不能用于实时控制领域。
 
其实Linux内核一路发展来,在历史的版本主线中仍然有很多技术公司或者大牛为了提升Linux系统的实时性而努力着,他们或是在某个版本上发布实时补丁,或是对内核进行一定程度上的改造,具体的代表有RTLinuxRTAI(Real-Time Application Interface)Xenomai等。RTLinux全称叫做AReal-Time Linux,它由美国新墨西哥矿业及科技学院V. Yodaiken开发。RTLinux采用了双内核的做法,可以说是开创了双内核法的先河。简单理解就是系统中存在两个内核,实时核和非实时核。底层硬件资源和实时的内核打交道绕开非实时核,来自硬件的中断源由实时核全面接管,把非实时的Linux内核当成实时核上的一个低优先级的进程来运行,通过这种方式确保实时核上的中断和任务得到优先响应,提升了实时性。Xenomai也借鉴了RTLinux的双内核做法,内部也有实时核和非实时核。但不同的是Xenomai在底层硬件和两个内核之间还加了一层硬件抽象层ADEOS(Adoptive Domain Environment for Operating System),实时核和非实时核作为硬件抽象层的两个域而存在,Xenomai内核属于实时域,Linux内核属于非实时域。ADEOS在系统的关键路径中对中断进行拦截,优先响应Xenomai实时域的中断,当没有实时任务和中断需要处理的时候才会轮到Linux内核执行。两者对比如下。
 


2RTLinuxXenomai框架对比

由于版权、技术专利等因素,RTLinux已经不再更新。而Xenomai因为注重拓展性,可移植性和可维护性,对开发者相对友好,目前还在不断推出补丁,并且在社区活跃度很高,在工控领域也有不少成功应用的案例。这些基于Linux系统去改造从而提升实时性的系统的出现,使得Linux系统在发展过程中在实时性的研究上热度不减。甚至有不少人从Linux系统实时性研究入手,深入去学习Linux内核的调度机制、中断机制、定时器机制等,逐渐发展成自己的兴趣和爱好。从我们作为普通技术族的实力来说,可能不具备像国外的公司或者一些技术组织大改并发布实时Linux的能力。而想要提升系统实时性,有的是出于自身工作的需要,有的则是带着个人的兴趣爱好去钻研,那么如果想提升Linux内核的实时性,我们该怎么做呢?

2.Linux实时性优化

2.1 实时性优化和时钟精度
 
知其然并知其所以然,知道影响实时性的因素才能很好的优化改造它。目前影响Linux内核实时性因素主要有时钟精度、系统中断、进程调度算法和内核可抢占性等。每一块都可以深入研究并做出相应的优化。首先是时钟精度,时钟就像是一个系统的脉搏,系统进程的调度切换是按照时钟节拍来进行的。目前Linux内核支持几种不同的系统节拍,可以在用户编译内核时配置。假设当前的系统节拍是100Hz,那么系统的时钟粒度就是10ms,如果提升到1000Hz,那么时钟粒度就是1ms,精度提升了10倍。
 


3:编译内核系统节拍设置

上面这张图是CentOS7.6发行版系统默认的系统节拍设置。时钟精度的提升最直接的影响就是系统中的调度动作加快了,进程的响应也更为及时,但随着而来的是时钟中断频率的加快,这也加大了系统的开销和压力,因为会频繁的响应系统的时钟中断。在某些CPU消耗型的进程上会由于系统频繁的进行进程切换而导致CPU资源浪费,CPU的时间会浪费在进程切换上,因为从进程切换到实际被调度执行之间有一个时间差,叫做进程切换开销,所以好和坏我们还是需要根据自己的系统表现来看待。
 
2.2 中断
 
其次是中断。无论是RTOS还是Linux,硬件中断在系统当中的响应优先级永远是最高的。RTOS由于支持中断优先级,在实际使用过程中可以根据产品的实际情况针对不同的外设场景设置不同的优先级,且高优先级的中断可以抢占低优先级的中断,使得RTOS的中断响应非常迅速。Linux系统中的中断模块远比RTOS系统复杂得多。通常,Linux系统在进入一个中断时候,会禁止本地CPU的中断。在处理具体某一个中断的时候,由于禁止了本地CPU中断(NMI类型的中断除外),当有新的中断到来的时候只好挂起,只有当前的中断处理完才打开本地中断并响应新的中断。如果系统中存在大量不同类型的中断,势必会有一些中断被延迟得不到及时响应,这种延迟现象在单核CPU上表现尤为明显。针对这种情况,就要求我们在编写实际中断处理函数的时候,尽量在中断处理函数中不做复杂的操作,坚守中断处理函数快进快出的原则。比如只读取硬件寄存器等简单操作即可,剩下的数据处理的操作放到中断下半部中去执行,这就是所谓的中断线程化传统上的中断下半部有软中断、tasklet、工作队列,它们的优先级也从高到低。软中断和tasklet工作在中断上下文不允许休眠它的优先级比工作队列高,工作队列工作在进程上下文允许休眠但是优先级最低,所以在实际编程开发中需要我们根据场景选择性的使用。如果是多核CPU,那么可以根据实际的中断情况把不同类型的中断迁移绑定到不同的CPU上,避免不同中断之间的干扰。下面以I.MX6DL硬件平台为例子介绍中断迁移的使用。首先,通过#cat /proc/interrupts指令查看系统的所有中断,如下图所示:


4:绑定中断前的系统中断分布

从上面图中可以看出,当前的硬件平台一共有4CPU,其中IMX-uartimx-i2c的中断集中发生在CPU0CPU3,从第一列可以知道它们的中断号分别是5869。接下来我们可以将IMX-uart中断全部迁移到CPU1上,让CPU0只响应imx-i2c中断。通过# echo "2" > /proc/irq/58/smp_affinity指令即可完成迁移。注意,这里的数字“2”表示CPU编号,它是从1开始。迁移后IMX-uart中断情况如下:
 


5:绑定中断后的系统中断分布

从前后两张图对比可以看出,中断迁移前,IMX-uartCPU3上的中断次数为1824次,在CPU0上中断次数为727次。中断迁移后,CPU0CPU3不再响应IMX-uart中断,CPU1IMX-uart中断次数由15次增加到了115次。我曾经在一个双核硬件平台上遇到过串口和SPI同时需要响应大量中断,它们互相影响导致中断响应不及时而出现数据丢失和输出不及时的情况,最终就是通过中断绑核解决的。中断绑核其实不能完全消除对实时性的影响,只能最大程度去降低中断对进程的影响,因为系统中NMI中断和本地时钟中断无法迁移和禁止。除了中断可以绑核,应用层的进程和线程也可以改变它们与CPU的亲和性,比如迁移到中断较少的核上,也能在一定程度上提升进程的实时性。
 
2.3进程调度算法
 
除了前面提到的时钟和中断外,还有一个影响实时性最大的因素就是操作系统的调度算法。Linux系统目前默认采用的是完全公平调度算法(CFS),它按照各个进程的权重来分配运行时间,在默认使用CFS的情况下,我们可以给有实时性需求的进程分配更高的优先级和权重,可以看做是通过赋予更高的优先级来获得更好的实时性。 Linux内核目前支持多种调度类,每一种调度类都是同一类型调度策略的集合,目前支持的调度类有:stopdeadlinerealtimeCFSidle。通常情况下进程都可选以上的几种调度类,他们的优先级依次由高到底排序,其中deadline调度类可选的调度策略有SCHED_DEADLINErealtime调度类可选的调度策略有SCHED_FIFOSCHED_RRCFS可选的调度类有SCHED_NORMAISCHED_BATCHSCHED_IDLE。在实际开发过程中,如果对时间有严格要求的实时进程可以选择deadline调度类,其他情况可以参考使用对应的调度策略,改变调度策略,是最直接的一种优化方式。其中deadline调度类的使用参考如下:

 


6deadline调度策略编程参考
 
2.4 内核其他限制
 
除了内核本身的调度算法的原因,Linux内核的调度模块当中还有其他限制因素。比如为了防止某个进程或某一个进程组长时间的占用CPU时间,Linux内核引入了一个运行带宽的概念也就是说某一个进程或进程组使用CPU的总时间不能超过这个带宽阈值,默认值是0.95s
 


7运行带宽默认值

实际开发过程中为了提高我们进程的实时性,需要进程长时间地占用CPU资源,我们可以把这个运行带宽给禁止掉。实际上不同的产品和使用场景也会有着不同的优化措施,如果设备的CPU核数比较多,我们可以从整体上去规划系统对于CPU的使用,大量的使用中断绑核和进程、线程绑核达到对CPU的独占使用。比如DPDK,它是Intel公司开发的一种高性能网络加速组件。在Linux内核中,传统的网络数据包的收发都是经过网卡驱动和内核协议栈,网卡驱动针对大数据包场景也做了大量的应对措施,但是从本质上来说,网络包的收发在内核中也还是依赖系统给我们实现好的软中断机制。DPDK则是使用轮代替了中断,它绕过了Linux内核的网络模块(驱动和协议栈),不需要频繁的进行数据的拷贝,使得用户空间可以直接看到硬件网卡的数据,这大大减小了数据传递路程上的开销。下面这张图就是使用轮询和DPDK独占CPU的一个例子。
 


8DPDK轮询独占CPU

再比如,irqbalance,它用于中断收集分配,会根据系统的负载情况自动进入性能模式和节能模式,会将中断平均分配到不同的CPU上去处理,特殊情况下我们需要禁止这个功能。还有其他比如禁止软锁、虚拟内存管理优化等。从上面可以看出,实时性优化的方法多种多样,甚至使用使用轮询代替了中断。但是关键还是在于我们要了解Linux内核模块的一些运行机制,和这些机制在实现上本身就存在的缺点,只有这样我们才能针对具体问题作出对应的优化措施。以上提到的这些方法只是从大的方向而且很浅显去分析和介绍Linux内核的实时性影响因素和对应的优化措施。总结起来有以下几点:
  • 1. 中断优先级高,要减少中断对进程的影响;


  • 2. 进程之间有优先级之分,要合理改变优先级;


  • 3. 内核模块的实现机制限制,在特殊情况下使用轮训;


  • 4. 提升系统节拍,提升定时精度;


  • 5. 禁止irqbalance,防止进入节能或休眠模式;

 
还有其他更为深入的细节我们没有深入分析,比如Linux进程切换耗时,中断响应耗时、内存分配开销以及普通定时器精度和高精度定时器精度等,这些都是从细分的模块方向去研究并优化。进程的切换涉及到主调度器和周期调度器,它们都不可避免地涉及到定时器,目前Linux内核的高精度定时器也很难做到us级别,这也就决定了在调度的时间上也不是那么地准确,再加上内核中充斥着大量的自旋锁,而自旋锁的使用会关闭CPU的中断进而影响实时性,所以在开发过程中更加提高了对我们自身的水平要求。

3.总结


 前面列举的这些优化措施实施起来很简单,但对于我们自身来说更要理解为什么要这么做。深入去分析Linux内核的机制,实际的去阅读内核的模块源码,才会在实时性或者Linux内核的学习道路上收获更多。比如阅读内核源码才会知道taskletworkqueue的应用场景的不同,尽管它们都是中断下半部之一,但是它们在内核当中执行的优先级还是有很区别。只有阅读内核源码,才会知道tasklethrtimer也是基于软中断的,而且这个软中断也有优先级之分。也只有阅读内核源码,才会知道系统目前实现了多少种软中断,甚至我们自己也可以实现软中断获得实时性的提升,尽管Linux内核不建议我们这么做。除了阅读内核的源码,掌握调试跟踪内核的工具也必不可少,比如ftracetrace-cmdkernelsharkperf等。俗话说,工欲善其事必先利其器,熟练掌握这些工具的使用会让我们优化工作更高效。ftrace是一个很强大的调试工具,除了常用的函数跟踪器能让我们轻松知道一个函数的执行耗时之外,它强大的event机制,更是可以直接让我们在驱动或者内核中添加跟踪点,输出内核执行过程中的各类数据,让我们轻松洞察内核的执行过程。总之,实时性优化是一条漫长的道路,一路上也充满了各种未知,钻研越深越对它充满好奇,也越觉得Linux内核神奇。比如你可能会好奇在Linux内核中一个进程从被唤醒到真正去执行这个过程花了多长时间。又比如一个外部中断,从它被触发到真正走到用户注册的中断处理函数,这个过程又花了多长时间。只有自己亲自到设备上去调试,去尝试弄明白这些问题了才会发现Linux内核有趣的地方,也才会越走越充实。以上只是我自己在工作过程中积累的一点观点看法,如果读者面对Linux内核不知道从何处入手的话,个人建议不妨从实时性优化这个方向入手,逐渐深入。


往期课程可扫以下二维码试听与购买



Linux阅码场 专业的Linux技术社区和Linux操作系统学习平台,内容涉及Linux内核,Linux内存管理,Linux进程管理,Linux文件系统和IO,Linux性能调优,Linux设备驱动以及Linux虚拟化和云计算等各方各面.
评论
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 99浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 328浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 73浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 168浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 134浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 211浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 293浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 79浏览
  • 百佳泰特为您整理2025年1月各大Logo的最新规格信息,本月有更新信息的logo有HDMI、Wi-Fi、Bluetooth、DisplayHDR、ClearMR、Intel EVO。HDMI®▶ 2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新规范将支持更高的分辨率和刷新率,并提供更多高质量选项。更快的96Gbps 带宽可满足数据密集型沉浸式和虚拟应用对传输的要求,如 AR/VR/MR、空间现实和光场显示,以及各种商业应用,如大型数字标牌、医疗成像和
    百佳泰测试实验室 2025-01-16 15:41 191浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 164浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 101浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 141浏览
  • 在物联网(IoT)短距无线通信生态系统中,低功耗蓝牙(BLE)数据透传是一种无需任何网络或基础设施即可完成双向通信的技术。其主要通过简单操作串口的方式进行无线数据传输,最高能满足2Mbps的数据传输速率,可轻松实现设备之间的快速数据同步和实时交互,例如传输传感器数据、低采样率音频/图像与控制指令等。低功耗蓝牙(BLE)数据透传解决方案组网图具体而言,BLE透传技术是一种采用蓝牙通信协议在设备之间实现数据透明传输的技术,设备在通信时会互相验证身份和安全密钥,具有较高的安全性。在不对MCU传输数据进
    华普微HOPERF 2025-01-21 14:20 71浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 46浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 93浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦