DIKW金字塔,AI爬到第几层了?

原创 脑极体 2022-04-09 19:37


你可能没听说过DIKW金字塔,但你一定曾被按在这座塔的鄙视链上摩擦过。


曾有某个游戏主播形容自己的预判:观众只看到了第二层,想到了第一层,实际上我在第五层。于是,网友们形容一些让人意想不到的操作,“这波啊,这波是在大气层”。


这种说法虽然有些戏谑,但还真有点科学道理。


DIKW金字塔,是一个关于人类理解、推理和解释的层次结构,分别是:数据(原始的事实集合)、信息(可被分析测量的结构化数据)、知识(需要洞察力和理解力进行学习)、智慧(指导行动)。


站在DIKW金字塔尖的人,相当于全部通关的顶级选手,掌握了数据、整理成信息、理解为知识、转化成智慧,才能让行动如有神助。足智多谋如诸葛亮,锦囊妙计用的那叫一个信手拈来,绝对是“站在大气层的男人”。

DIKW金字塔适用于人,也适用于AI吗?答案是肯定的。


如果AI也有鄙视链,那么基于数据的AI,一定会被基于知识的AI碾压。


这是因为,AI Is A Knowledge Technology,AI就是一种由知识驱动的技术。因此,从初级人工智能向高级人工智能、通用人工智能发展的过程,也是一个攀爬DIKW金字塔的过程。


近年来,AI领域的诸多学术力量、产业力量,从强调“数据出奇迹”的蛮力计算,向着“知识金字塔”的更高层级进发,推动知识计算引领AI应用的未来潮流。


可以说,我们正处于一个向基于知识的AI过渡的关键阶段。AI已经影响着你我生活的方方面面,所以有必要来聊一聊,AI沿着DIKW金字塔向上攀爬,将会带来怎样的变化?


回归的钟摆:

理性主义的复兴


将知识运用在机器智能当中,并不是什么新鲜事。早在上个世纪,人类就开始了探索知识计算的步伐,并广泛应用到工作和生活当中。


AI诞生的那一刻起,就是理性主义和经验主义两大流派的交相辉映、此消彼长。它们的共同之处,都认为机器智能首先要拥有知识,知识是智能的核心;分歧在于,对于知识的理解和获取途径不同。


而伴随着这两大流派的发展,知识与AI的结合,也就表现为两种方式。


一种是理性主义的结合,人提供知识,机器负责计算。


理性主义认为人的智能是先天遗传的,要实现机器智能,就要理解人脑的运行机制,将这个东西总结成知识,再由人来告诉机器怎么做。


典型应用就是专家系统。


人类专家总结出知识,计算机根据专家系统知识库进行学习,这种方式可解释性非常高。从1968年世界上第一个专家系统——化学专家系统DENDRAL研制成功之后,针对某个单一领域、模仿专家进行推理分析的早期专家系统开始流行起来,广泛应用于工农业、医疗、气象、交通、军事等众多产业计算场景之中。


不过,专家机只能在一些特定领域发挥作用,建构成本非常高。并且,受限于专家的认知上限,如果人都没有找到那个知识,或者表述不出来的话,机器就更不可能学会了。



于是从九十年代到现在,另一种AI与知识的结合模式就占据了主流,那就是经验主义。


由人手工打造一个分类器,开发人员不必提前知道答案,机器可以不依赖那些人类专家描述不出来、“只可意会不可言传”的知识,按照自己的运作机制,从数据中来挖掘知识,通过大规模数据训练出模型参数,表现出超过人类的智能。


最具代表性的就是深度学习。


依靠强大的数据、算力和神经网络,谷歌大脑可以不需要人类的帮助,在不知道“猫”这个词的前提下,通过训练将数据转化为知识,看过数百万张图片后,自己提炼出猫的基本特性,知道猫是一种毛茸茸的(此处省略一堆形容词)生物,然后成功在一堆照片中识别出猫。

基于庞大的数据,AI虽然并不真正理解和掌握相关知识,也就是“知其然不知其所以然”,不可能真的取代人类专家,但可以将复杂的模式识别问题分解成更简单的模式识别问题,在一些特定任务中表现得比人类更好、效率更高,取得了长足的发展。深度学习也被视为经验主义的高峰,成为推动第三次AI浪潮的核心。


但是,基于数据的AI,和基于知识的AI,还是有本质区别的。著名的莫拉维克悖论,早就指出过这个问题,因为机器无法像人一样将隐性知识融入思想和行动之中,形成高阶智慧,所以成了逻辑的巨人、常识的矮子,在一些困难的问题如下围棋上能超越人类,但在很简单的认知问题上,表现反而不如四五岁的人类小孩儿。



而解决思路之一,就是理性主义所推崇的,让机器能够如同真正的人类一样理解知识并进行思考。


就像丘吉在《钟摆摆得太远》(A Pendulum Swung Too Far)所预测的那样,AI已经偏离经验主义太远,将来回归理性主义的速度就会越快,理性主义复兴的步伐正在到来。



产业的呼唤:

数智化浪潮与知识之光


或许你会认为,经验主义和理性主义,只是学术界的流派之争,跟普通人和工业界没什么关系。


实际上,在产业智能化的浪潮中,有越来越多的行业和组织,开始呼唤基于知识的AI,这是因为——


模型设计阶段,需要基于知识的理解。


我们知道,AI已经开始走出实验室和象牙塔,走向千行百业,开始与物理世界和生物世界结合,而这些领域的数据并不是全部由1和0所构成。


比如AI预测蛋白质结构,每个蛋白质都不是一个简单的图像数据,它的背后是有具体意义的。不同的分子关系如何、怎样相互作用、靠什么原理组合在一起等,有一整套生物学逻辑和知识体系支撑的,如果缺乏对药学知识的了解,用纯数据驱动的方法来设计模型,很可能做出来的模型无法发挥效用。


因此,想要AI模型真正能够在产业端发挥价值,要结合实际工作的机理模型、专家知识等,转化为AI可理解、可处理、可分析的数学语言。



模型训练阶段,需要基于知识的数据。


在产业AI中,数据中往往存在大量的信息,也就是没有或无法被表征的知识,往往体现为专家经验或师徒传承。想要训练出效果更好的产业模型,不仅需要大量、完备的数据,还要能够精准描述出数据之间的知识关系,这样才能够从数据中挖掘出更多有用的知识。


就拿我们日常都会碰到的推荐算法来说,传统的推荐算法是用户喜欢什么就推荐什么,很容易陷入信息茧房。而国内某科研团队,将食品营养科学的知识图谱与推荐算法相结合,根据用户反馈数据,比如点击量、兴趣偏好、身体数据等等,结合健康知识来进行组合搭配与推荐。


基于知识的数据,能够帮助打造高质量、更懂人性的算法。就拿前面提到的推荐系统来说,相比不断迎合用户的算法,提供了一种既满足口味喜好、又符合健康管理要求的选择。再设想一下,如果AI能够将外卖配送员的行为数据与人的常识性知识结合到一起,或许无限挤压配送时间导致的内卷困境,也有望被解决了。



模型落地阶段,需要基于知识的信任。


AI模型落地应用,在很大程度上取决于其可靠性:一是可信度,结果是否被人所信任,深度学习受限于可解释性问题,在医疗等专精领域不如人类专家被信任;二是可靠性,能否在被干扰的情况下也能表现出较好的性能,也就是解决鲁棒性问题。


中科院院士、清华大学人工智能研究院院长张钹教授曾提出,在产业落地应用的人工智能,需要符合五个条件:丰富数据或知识、完全信息、确定性信息、静态环境、特定领域或单一任务。这五个条件只要有一个不满足,AI产业化落地都非常困难。


而改变困境的思路之一,就是知识计算,让AI系统能够读懂知识、学会常识推理,从而让模型变得可信任、高可靠。


此前,谷歌为了提高搜索引擎结果的可信度和说服力,就将NLP与知识图谱相结合来进行学习。如果搜索者发现一些文章提到“XX曾在中国工作过”的信息,这些信息与知识库融合在一起,显示出XX曾为对华贸易委员会工作,而该组织在北京设有办事处,那么“XX曾在中国工作过”的可信度就会大大提高。



同样,如果自动驾驶系统从大规模文本信息中提取并学习到一些出行常识,比如“大卡车挡住了前方的视线,应该小心一点,说不定突然过来一个人就可能撞到”,对常识性知识的理解无疑会大大增加人们对自动驾驶安全性的信心。


模型应用阶段,需要基于知识的计算。


当前产业智能化的一大瓶颈是高成本的算力。庞大的深度神经网络系统需要大量计算资源来处理复杂任务。一份来自马萨诸塞大学的研究显示,常见的几种大型 AI 模型,训练过程会排放超过 626000 磅二氧化碳,几乎是普通汽车寿命周期排放量的五倍。


拉踩一下,人类在思考(也是一种知识计算)时就十分节省能耗,心理学家卡尼曼在《思考,快与慢》中就提出,人脑既可以通过系统2进行较慢的理性思考,也可以经由系统1,基于已经内化的知识,实现无意识的、近似于肌肉记忆的快速运算,大脑能量消耗极少。


未来,打造基于知识的AI模型,如同激活脑区一样,将成为绿色计算的重要方法,保证产业智能的可持续发展。



不难发现,行业知识与AI计算的结合,既是理论上技术发展的必然阶段,也是事实上产业AI化所不可或缺的一步。


作为一种致用技术,AI只有真正接纳并融合行业知识,让计算与知识转变成新时代的生产力,才能凝结出技术的长期价值,推动第三次人工智能浪潮继续向前奔涌。



艰难的攀爬:

从数据层到知识层总共分几步?


抛开应用条件谈技术前景的都是“画饼”,基于知识的AI同样少不了前提条件。需要具备至少几个特征:


1. 知识表征的准确性。


要让AI理解并利用知识来解决复杂的现实问题,首先需要将这些内容转化为数学语言,变成AI可解的数据化路径。


不过,一个AI系统中需要被表示的知识类型有很多,想要全面且准确地表示出来并不容易。


其中,既有容易被表征的陈述性知识,如何做某事的程序性知识;也有不易被描述出来的知识,像是基于某个领域的专家经验所总结的启发性知识,就未必全是正确的;以及表示概念关系的结构知识,比如分子和分子的相互作用,目前人类了解得还不够全面。


知识表征的准确性,将直接影响到机器是否能像人类一样智能。



2.知识推理的多样性。


推理能力是人类与其他物种最大的不同,尤其是创造性思维。而知识计算的核心能力正是推理能力,根据现有的表征结构产生相对应的新知识,为产业侧提供创造性见解。


完全可以想象这样一个场景:建立一个庞大的知识库,储存着人类完成各种任务所需要的知识, AI不再需要对每一个特定场景、特定数据集进行专门训练,可以像一个真正的聪慧人类一样,触类旁通、举一反三,轻松地完成推理分析,应对现实世界中各种各样的复杂任务。



3. 知识获取的自动化。


建立常识库并不是件容易的事,也被叫做“AI 的曼哈顿工程”。 尤其是信息爆炸带来的海量数据,需要机器接管将信息转化为知识的工作,要提高知识获取的效率,自动化成为必须啃下的一块硬骨头。


使用自动化方法来获取新知识,能够加快AI知识系统迭代,实现模型的自动更新,缩短构建行业知识图谱的时间。



4. 知识应用的高效率。


不同行业的知识沉淀、应用、管理方式千差万别,让企业自己去搭建一套个性化工具并不现实。因此,知识计算想要落地行业,还需要一系列标准化工具,提供知识搜索、高性能查询、可视化分析等功能,提高对知识的挖掘效率。


作为一个新崛起的技术方向,需要有前瞻眼光的平台化科技企业与组织来做好基础设施建设,并将能力接口向各行各业企开放。



数据和信息描述世界,知识和智慧理解世界。从这个角度说,AI在DIKW金字塔上的层次越高,能力就越强,距离强人工智能也就越近。这条攀爬之路并不好走,却是AI产业化和产业AI化的必经之路。


最后的最后,当AI登上金字塔尖的那一刻,获得真正的智慧,届时我们已经不能确定,AI会不会是地球上最聪明的物体了。或者说,人类还在智慧的最高层吗?


正如艾略特在诗中所写的:“我们在哪里丢失了知识中的智慧?又在哪里丢失了信息中的知识?”(Where is the wisdom we have lost in knowledge?/ Where is the knowledge we have lost in information?)


曾几何时,智慧是人类所特有的东西,是人作为万物之灵长的代表。很多人正在数字时代,越来越少地掌握知识、主动思考,越来越多地沉浸于支离破碎的数据和信息汪洋之中。


或许,当我们见证AI向金字塔尖攀爬的时候,更重要的是,对人类向金字塔底部的滑落保持一点警醒。


脑极体 从技术协同到产业革命,从智能密钥到已知尽头
评论
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 726浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 154浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 378浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 134浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 203浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 200浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 153浏览
  • 飞凌嵌入式基于瑞芯微RK3562系列处理器打造的FET3562J-C全国产核心板,是一款专为工业自动化及消费类电子设备设计的产品,凭借其强大的功能和灵活性,自上市以来得到了各行业客户的广泛关注。本文将详细介绍如何启动并测试RK3562J处理器的MCU,通过实际操作步骤,帮助各位工程师朋友更好地了解这款芯片。1、RK3562J处理器概述RK3562J处理器采用了4*Cortex-A53@1.8GHz+Cortex-M0@200MHz架构。其中,4个Cortex-A53核心作为主要核心,负责处理复杂
    飞凌嵌入式 2025-01-24 11:21 88浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 95浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 751浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 169浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦