训练YOLO网络

TsinghuaJoking 2020-02-22 00:00

作为目前机器学习领域最火热的研究方向之一,计算机视觉相关的技术一直备受关注。其中,目标检测是计算机视觉领域常见的问题之一,如何平衡检测的质量和算法的速度很重要。对于这个问题,计算机视觉工程师、VirtusLab 创始人 Piotr Skalski 发表了自己的心得,分享了关于他最喜欢的计算机视觉算法 YOLO 的实践资料。

以下便是他的全文。

前言

YOLO 是我最喜欢的计算机视觉算法之一,在很长一段时间里,我计划着专为它写一篇博文。然而,我不希望它成为另一篇详细解释 YOLO 背后工作原理的文章,网上有很多文章都很好地涵盖了它理论方面的知识。除此之外,如果你想加深对这个架构的理解,直接从源代码获取信息并阅读源文件(https://arxiv.org/abs/1506.02640)也是一个好主意。

基于 YouTube-8M 数据集的篮球场球员移动检测

这一次,我将向你展示如何快速地、以相对较低的代价和不那么强大的机器创建目标检测模型,这个模型能够检测任何你选择的对象。如果你需要在工作中快速测试你的想法,或者只是有一小段时间建立在家构建你的项目,这是一个很好的方法。去年,我有机会进行了几个这样的实验,本文中出现的所有可视化结果都是出自这些项目。注意:这一次,我们将主要使用开源库和工具,因此我们网站上的编码量将是最小的。但是,为了鼓励你使用 YOLO 并为你的项目提供一个起点,我还提供了脚本,允许你下载我的预训练模型以及所有配置文件和测试数据集。像往常一样,你会在我的 GitHub 上找到所有的内容:https://github.com/SkalskiP/ILearnDeepLearning.py/tree/master/02_data_science_toolkit/02_yolo_object_detection。

YOLO

所有不知道 YOLO 是什么的人不要担心,也不要去任何地方找资料!我现在简要地解释一下我说的是什么。

YOLO 是一种实时目标检测算法,它是第一个平衡所提供检测的质量和速度的算法。通常,这类最强大的模型,都是建立在卷积神经网络的基础上,这次也不例外。所谓「目标检测模型」,我们的意思是,我们不仅可以用它来找出给定照片中存在的对象,还可以用它来指示它们的位置和数量。除其他外,这种模型在机器人和汽车工业中都有应用,因此检测速度至关重要。自2015年以来,该算法已经进行了三次迭代,还有为 TinyYOLO 等移动设备设计的变体。移动版本的精度有限,但计算要求也较低,运行速度更快。

数据集

和深度学习一样,创建模型的第一步是准备一个数据集。有监督的学习是查看标记的示例并在数据中发现不明显的模式。我必须承认创建一个数据集是一个相当乏味的任务,因此我准备了一个脚本,允许你下载我的象棋数据集,并查看 YOLO 如何在这个例子中工作。

但那些想要建立自己的数据集的人面临着挑战。为了实现这个目标,我们需要收集一组图像并创建匹配的标签文件。图片应该包含我们想识别的对象,并且,数据集中所有对象的类的分布应该类似。如你所见,在我的第一个项目——篮球探测器中,我使用了游戏视频中的框架。

篮球数据集的图像样本

标签文件应该与图像具有相同的名称,但显然具有不同的扩展名,并且应该位于并行目录中。最佳数据结构如下所示。除了 images 和 labels 目录之外,我们还必须准备 class_names.txt 文件,该文件定义我们计划检测的对象类的名称。这个文件的每一行代表一个类,应该包含一个或多个没有空格的单词。

最佳的数据结构

标记

不幸的是,YOLO 需要一个特定的标签格式,这是大多数免费标签工具不支持的。为了消除从 VOC XML、VGG JSON 或其他广泛使用的格式解析标签的需要,我们将利用 makesense.ai(https://www.makesense.ai/),这里是我在 GitHub 上开发的一个免费开源项目(https://github.com/SkalskiP/make-sense )。编辑器不仅支持直接导出到 YOLO 格式,而且直观,不需要安装,可以在浏览器中工作。此外,它还支持多种功能,旨在加快你的标签工作。可以使用 MakeSense 查看人工智能支持的标记过程。

AI支持使用makesens.ai进行标记

工作完成后,我们可以下载一个 .zip 文件,其中包含 .txt 文件。每一个这样的文件都对应于一个标记的图像,并描述照片中可见的对象。如果我们打开其中一个文件,我们会发现,每一行都是 class_idx x_center y_center width height 式。其中 class_idx 表示 class_names.txt 文件中指定标签的索引(从 0 开始计数)。其余参数描述围绕单个对象的边界框,它们可以取 0 到 1 之间的值。幸运的是,大多数时候我们不需要考虑这些细节,因为编辑器会为我们处理所有的事情。YOLO 格式的标签示例如下所示。

标签示例

环境设置

YOLO 最初是在一个叫做 Darknet 的深度学习的小框架中写的。从那时起,许多其它实现已经创建,其中大多数使用两个非常流行的 Python 平台:Keras 和 PyTorch。在所有可用的解决方案中,有一个是我特别喜欢的(https://github.com/ultralytics/yolov3)。它提供了一个用于训练和检测的高级 API,但也具有很多有用的特性。在使用它时,我们的所有工作归结为准备一个数据集和创建几个配置文件,然后其余的工作就交给库了。

环境设置文件目录

环境设置也非常简单——可以归结为运行几个命令,你可以在下面找到这些命令(假设你的计算机上已经安装了 Python 和 Git)。最好从项目目录中执行命令,以实现上面所示的结构。值得一提的是,环境也可以通过 Docker 创建(这对 Windows 用户特别有用)。你可以在这里(https://github.com/ultralytics/yolov3/wiki/Docker-Quickstart)找到更多关于这个主题的说明。

# Clone frameworkgit clone https://github.com/ultralytics/yolov3.git# Enter framework catalogue [Linux/MacOS]cd ./yolov3# Setup Python environmentpip install -U -r requirements.txt

配置

如前一段所述,我们现在需要做的就是创建几个配置文件。它们定义了训练集和测试集的位置、对象类的名称,并提供了所用神经网络的架构指南。

国际象棋数据集标准参考图片

首先,我们需要将数据集分割成训练集和测试集。我们使用两个 .txt 文件来完成这项工作,它们中的每一个都包含指向数据集中特定图像的路径。为了加快工作速度,我准备了一个 Python 脚本,它将自动为我们创建这些文件。你只需指示数据集的位置并定义训练集和测试集之间的分割百分比。train.txt/test.txt 文件的片段如下所示。

classes=12train=./data/chess_train.txtvalid=./data/chess_test.txtnames=./data/chess.names

.data 是我们需要提供的最终文件。让我们用下一个项目的例子来讨论它的内容——象棋检测器。在本例中,我有 12 个惟一的对象类想要识别。接下来,我们给出定义哪些照片属于训练集,哪些照片属于测试集的文件的位置,最后给出前面讨论的带有标签名称的文件的位置。为了使一切正常工作,chess.data、chess_train.txt、chess_test.txt 和 chess.names 文件应移动到 project/yolov3/data 目录。

classes=12train=./data/chess_train.txtvalid=./data/chess_test.txtnames=./data/chess.names

训练

现在我们准备开始训练。如前所述,我们使用的库有一个高级 API,因此终端中的一个命令和几个参数就足以启动这个过程。然而,在下面还有几件大大增加我们取得最终成功的几率的事情。

python3 train.py--data ./data/project.data --cfg ./cfg/project.cfg --weights ./weights/yolov3.pt

首先,我们可以应用迁移学习,我们不必从头开始训练。我们可以使用在不同数据集上训练的模型的权重,从而缩短我们自己的网络的学习时间。我们的模型可以使用基本的形状知识,并专注于将这些信息链接到我们想要识别的新类型的对象。其次,库执行数据增强,因此它根据我们提供的照片生成新的示例。因此,即使我们只有一个很小的数据集——几百张图片,我们也可以训练我们的模型。我们使用的库还为我们提供了一个由于增强而创建的图像示例。下面你可以看到在我的篮球探测器的训练过程中创建的示例。

训练集数据增强的可视化

检测

最后,快乐的时刻来了!我们致力于创建模型的工作得到了回报,现在可以用它来找到我们在任何照片中想要寻找的对象。同样地,这是一个非常简单的任务,我们可以用终端中的一个简单命令来完成。执行之后,我们将在输出目录中找到预测的结果。值得一提的是,我们还可以对自己拍摄的视频进行实时预测,这在项目演示中尤其有用。

python3 detect.py--data ./data/project.data --cfg ./cfg/project.cfg --weights ./weights/best.py --source ./data/sample
基于TinyYOLO的象棋检测

结论

如果你完成了上面的所有内容,那么恭喜你!非常感谢你花时间阅读这篇文章。我希望我能证明训练你自己的定制 YOLO 模型并不困难,我的建议将对你未来的实验有所帮助。

资料来源:

https://towardsdatascience.com/chess-rolls-or-basketball-lets-create-a-custom-object-detection-model-ef53028eac7d

TsinghuaJoking 这是一个公众号,它不端、不装,与你同游在课下、课上。 卓晴博士,清华大学中央主楼 626A。010-62773349, 13501115467,zhuoqing@tsinghua.edu.cn
评论
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 100浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 161浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 86浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 234浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 145浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 172浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 122浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 75浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 82浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 113浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 126浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 211浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 127浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦