MEMORY系列之“SRAM”

硬件助手 2019-03-01 08:00

本文主要介绍SRAM的物理结构、引脚定义及操作流程。


1、SRAM结构

SRAM常见的结构有两种:四管二电阻结构和六管结构,分别如下图所示,现在基本都用的六管结构。



6T:指的是由六个晶体管组成,如图中的M1、M2、M3、M4、M5、M6。SRAM中的每一bit数据存储在由4个场效应管(M1,M2,M3,M4)构成的两个交叉耦合的反相器中。另外两个场效应管(M5,M6)是存储基本单元到用于读写的位线(Bit Line)的控制开关。

具体结构简化示意如下:



2、SRAM引脚

引脚

定义

VDD

工作电压

VSS

I/On

数据线

UB#LB#

/低字节控制

An

地址线

WE#

写使能

CE1#CE2

片选

OE#

输出使能


SRAM地址信号没有线序,可任意交换,因为不涉及到内部寄存器的配置,也没有类似DRAM的刷新功能那样的操作,虽然可以更换地址,但一般都将A0作为最高位来使用的。而SDRAM由于行列地址共用,且使用数量不一样,写配置数据时分别使用不同的地址线,因此不能交换!
数据引脚可以更换,但一般将I/O0作为最低位、将I/O7作为最高位使用。
器件的片选信号,虽然存在CE1#和CE2两个信号,但它们是以AND条件选择的。也就是说,只有当CE1为低电平且CE2为高电平时,器件才处于选择状态。如果不在选择状态,则其他输入引脚的状态将全部被忽略。
OE#(Output Enable输出使能)。打开SRAM数据输出缓冲器的信号。读操作时,利用片选后的状态(CE1#=低电平;CE2=高电平)指定地址,如果OE#为低电平,则在I/O引脚上将出现存储器的内容,但必须事先将WE#设为高电平。
WE#(Write Enable写使能)。向SRAM写入的信号。在WE#上升时刻,数据被写入到存储器中。当WE#和OE#都为低电平时,WE#优先进行操作。也就是说,在OE#为低电平、保持向I/O引脚输出数据的状态中,如果将WE#设为低电平,I/O引脚将转换为输入模式。

3、SRAM的操作流程

SRAM的基本单元有3种状态:standby(电路处于空闲),reading(读)和writing(写)。SRAM的读或写模式必须分别具有"readability"(可读)与"write stability"(写稳定)。



3.1、Standby

当外界不访问该单元时,字线WL处于低电平,此时作为控制用的M5与M6两个晶体管处于断路,把基本单元与位线隔离。由M1~M4组成的两个反相器继续保持其状态,只要保持与高、低电平的连接。


3.2、Reading

假定存储的内容为1,即在Q处的电平为高。读周期之初,两根位线预充值为逻辑1,随后字线WL充高电平,使得两个访问控制晶体管M5与M6通路。第二步是保存在Q的值传递给位线BL在它预充的电位,而泻掉nBL预充的值,这是通过M1与M5的通路直接连到低电平使其值为逻辑0(即Q的高电平使得晶体管M1通路)。在位线BL一侧,晶体管M4与M6通路,把位线连接到VDD所代表的逻辑1(M4作为P沟道场效应管,由于栅极加了nQ的低电平而M4通路)。

如果存储的内容为0,相反的电路状态将会使nBL为1而BL为0。只需要nBL与BL有一个很小的电位差,读取的放大电路将会辨识出哪根位线是1哪根是0。敏感度越高,读取速度越快。

从存储单元读出“1”的过程是:

  • 预充BL和nBL位线到“1”电平,此时WL字线处于低电平;

  • 使WL字线为高电平,M5和M6导通;

  • nBL通过M5和M1(单元存“1”时,M1一直处于导通状态)迅速放电至“0”电平,M3仍然截止;

  • VDD通过M4和M6对BL充电,使BL保持在“1”电平,M1仍然导通;

  • 去掉字线WL上的高电平。

这样就完成了从存储单元读出“1”的全过程,而且是非破坏性读出。由于单元管的尺寸很小,而位线通过单元管放电的速度很慢,为了提高读出速度,只要在位线上建立起一定的电压差就可以了,而不必等到一边位线下降到低电平。通过列译码器控制的列开关,把选中的单元位线读出的微小信号差送到公共数据线,再通过公共数据线送到灵敏放大器,把微小的信号差放大为合格的高低电平,最后通过缓冲器转换成单端信号输出。


3.3、Writing

写周期之初,把要写入的状态加载到位线。如果要写入0,则设置nBL为1且BL为0。随后字线WL加载为高电平,位线的状态被载入SRAM的基本单元。这是通过位线输入驱动(的晶体管)被设计为比基本单元(的晶体管)更为强壮,使得位线状态可以覆盖基本单元交叉耦合的反相器的以前的状态!

向存储单元写入“1”的过程是:

  • 当WL字线为低电平,置BL位线为“1”电平,nBL为“0”电平;

  • 置WL字线为高电平,此时M5、M6导通;

  • 存储单元的存储节点nQ通过M5向NBL放电,达到“0”电平,M3截止;

  • BL位线通过M6,VDD通过M4,对存储节点Q充电至“1”电平,M1导通;

  • 置WL字线为低电平,M5、M6管关闭,此时存储单元的结点Q处于“1”电平状态,nQ处于“0”电平状态。

样就完成了向存储单元写入“1”的全过程。通常SRAM存储单元都做成阵列结构,多个存储单元共用一根字线,在连续进行写入操作时,如果时序上配合不当,就有可能用前次位线上的数据改写同一根字线上的其他单元中的数据。

硬件助手 将艺术融于技术,将技术融于生活。 Art in tech, tech in life.
评论
  • 1月9日,在2025国际消费电子展览会(CES)期间,广和通发布集智能语音交互及翻译、4G/5G全球漫游、随身热点、智能娱乐、充电续航等功能于一体的AI Buddy(AI陪伴)产品及解决方案,创新AI智能终端新品类。AI Buddy是一款信用卡尺寸的掌中轻薄智能设备,为用户带来实时翻译、个性化AI语音交互助手、AI影像识别、多模型账户服务、漫游资费服务、快速入网注册等高品质体验。为丰富用户视觉、听觉的智能化体验,AI Buddy通过蓝牙、Wi-Fi可配套OWS耳机、智能眼镜、智能音箱、智能手环遥
    物吾悟小通 2025-01-09 18:21 133浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 133浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 109浏览
  • Snyk 是一家为开发人员提供安全平台的公司,致力于协助他们构建安全的应用程序,并为安全团队提供应对数字世界挑战的工具。以下为 Snyk 如何通过 CircleCI 实现其“交付”使命的案例分析。一、Snyk 的挑战随着客户对安全工具需求的不断增长,Snyk 的开发团队面临多重挑战:加速交付的需求:Snyk 的核心目标是为开发者提供更快、更可靠的安全解决方案,但他们的现有 CI/CD 工具(TravisCI)运行缓慢,无法满足快速开发和部署的要求。扩展能力不足:随着团队规模和代码库的不断扩大,S
    艾体宝IT 2025-01-10 15:52 115浏览
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 138浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 146浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 173浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 135浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 158浏览
  • 车机导航有看没有懂?智能汽车语系在地化不可轻忽!随着智能汽车市场全球化的蓬勃发展,近年来不同国家地区的「Automotive Localization」(汽车在地化)布局成为兵家必争之地,同时也是车厂在各国当地市场非常关键的营销利器。汽车在地化过程中举足轻重的「汽车语系在地化」,则是透过智能汽车产品文字与服务内容的设计订制,以对应不同国家地区用户的使用习惯偏好,除了让当地车主更能清楚理解车辆功能,也能进一步提高品牌满意度。客户问题与难处某车厂客户预计在台湾市场推出新一代车款,却由于车机导航开发人
    百佳泰测试实验室 2025-01-09 17:47 95浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 155浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦