嵌入式编程应用:union的精妙之用

嵌入式ARM 2022-03-29 12:00

union 概念

union 在中文的叫法中又被称为共用体,联合或者联合体,它定义的方式与 struct 是相同的,但是意义却与 struct 完全不同,下面是 union 的定义格式:

  1. union 共用体名

  2. {

  3. 成员列表

  4. }共用体变量名;

那么它与结构体的定义方式相同,那么区别是什么呢,下面通过一个 struct 与 union 的嵌套来说明两者的区别所在。

  1. struct my_struct

  2. {

  3. int type;

  4. union my_union

  5. {

  6. char *str;

  7. int number;

  8. }value;

  9. }Elem_t;

访问方式是同结构体是一样的,比如我要访问 number 变量,那么就可以以如下的方式进行访问:

  1. Elem_t.value.number = 10;

union 与 struct 的区别是什么呢?用一句话概括就是共用体中的成员的地址都是一样的,结构体中的成员都具有各自的地址,下面用一张图展示 Elem_t 在内存中的存储。

看到变量在内存中的存储位置之后,也就明白 union 的特性了,对于这样存储的好处显而易见,程序中能够使用不同类型的变量并且只占用一个变量的存储空间,能够节省存储空间。上述程序中共用体的中两个成员所占的存储空间大小一样,都是四个字节,所以最终这个共用体所占存储空间的大小就是四个字节,如果共用体的成员的存储空间大小不一样,那么共用体存储空间的大小取决于成员中存储空间最大的一个。

union 的应用

使用 union 来打包数据

在使用联合在打包数据的时候,必须要清楚当前处理器是大端对齐还是小端对齐。

  • 大端对齐:数据的低位保存在内存的高地址中,数据的高位保存的内存的低地址中。

  • 小端对齐:数据的低位保存在内存的低地址中,数据的高位保存在内存的高地址中。

下面用图的形式举一个例子分别在大端对齐和小端对齐中的存储形式。

有了大端对齐和小端对齐的认知下,我们来看 union 如何对数据进行打包,下面给出一段代码:

  1. #include

  2. int main(void)

  3. {

  4. union

  5. {

  6. unsigned int word;

  7. struct

  8. {

  9. unsigned char byte1;

  10. unsigned char byte2;

  11. }byte;

  12. }u1;


  13. u1.byte.byte1 = 0x21;

  14. u1.byte.byte2 = 0x43;

  15. printf("The Value of word is:0x%x\n",u1.word);

  16. }

上述的运行结果会根据对齐方式的不一样而有所差别。如果是小端模式:

  1. The Value of word is:0x4321

如果是大端模式:

  1. The Value of word is:0x2143

当然对于采用这种方式进行数据的打包来说,弊端也是很明显的,因为会因为处理器的对齐方式而产生不同的结果,所以,我们往往采用的都是通过数据移位的方式来实现:

  1. uint8_t byte3 = 0x21;

  2. uint8_t byte4 = 0x43;

  3. uint16_t word;

  4. word = (((uint16_t)byte4) << 8)|((uint16_t)byte3);

上述的写法便不会收到处理器对齐方式的影响,也具有更好地移植性。

union 在数据传输中的应用

背景:现在有两个小车需要进行通信,分别是小车 A 和小车 B ,有些时候,小车 A 需要向小车 B 发送它当前的速度,有些时候,小车 A 需要向小车 B 发送它当前的位置,而有些时候小车 A 需要向小车 B 发送它当前的状态。

分析:在上面的背景当中,我们得知发送的消息的时候并不是同时要发送速度,状态,位置,而是这三个参数分开来的,并不是同时需要,那这个时候,我们就可以采用 union 的特性来构造一个数据结构,这样做的好处是能够缩减变量占用的内存,比如说我们不采用 union 来构造的话,通常我们会采用结构体的方式,比如这样:

  1. struct buffer

  2. {

  3. uint8_t power; /*当前电池容量*/

  4. uint8_t op_mode; /*操作模式*/

  5. uint8_t temp; /*当前的温度*/

  6. uint16_t x_pos;

  7. uint16_t y_pos;

  8. uint16_t vel; /*小车当前的速度*/

  9. }my_buff;

采用上述的结构的话,我们可以计算一下(不考虑内存对齐的情况,内存对齐的话要对结构体内存进行填充,笔者打算后面单写一篇文章记录内存对齐的问题),结构体占用的存储空间是 9 个字节,为了优化我们的代码,我们可以采用如下的方式来构造我们要传输的数据。

  1. union

  2. {

  3. struct

  4. {

  5. uint8_t power;

  6. uint8_t op_mode;

  7. uint8_t temp;

  8. }status;


  9. struct

  10. {

  11. uint16_t x_pos;

  12. uint16_t y_pos;

  13. }position;


  14. uint16_t vel;

  15. }msg_union;

这样一来,从存储空间来讲,这个 union 所占的空间只有 4 个字节。如果要将发送的数据封装成一个数据帧,那上面所定义的 union 就存在问题了,因为接收方就不知道发送方发过去的是哪个参数,因此,需要在里面加入参数类型这个变量,于是就有了如下的代码:

  1. struct

  2. {

  3. uint8_t msg_type;

  4. union

  5. {

  6. struct

  7. {

  8. uint8_t power;

  9. uint8_t op_mode;

  10. uint8_t temp;

  11. }status;


  12. struct

  13. {

  14. uint16_t x_pos;

  15. uint16_t y_pos;

  16. }position;


  17. uint16_t vel;

  18. }msg_union;

  19. }message;

有了 msg_type 的加入,我们就可以在接收端对数据进行解析了。

小结

通过上述的这个例子,我们现在来回顾一下,如果不使用 union 的话,在进行数据传输的时候,直接将由 struct 构造的数据形成数据帧发送过去,发送的数据包要比使用 union 构造的数据大不少,使用 union 构造数据,既能够帮助我们节省了存储空间,还节省了通信时的带宽。

union 在数据解析中的应用

上面一个例子我们使用 union 在数据传输中优化了代码,那么 union 在数据解析中又具有什么作用呢,看下面这样一段代码:

  1. typedef union

  2. {

  3. uint8_t buffer[PACKET_SIZE];


  4. struct

  5. {

  6. uint8_t size;

  7. uint8_t CMD;

  8. uint8_t payload[PAYLOAD_SIZE];

  9. uint8_t crc;

  10. }fields;

  11. }PACKET_t;


  12. // 函数调用方法:packet_builder(packet.buffer,new_data)

  13. // 将新数据存到 buffer 的时候,还需要一些额外的操作

  14. // 比如应该将 size 存放 buffer[0]中

  15. // 将 cmd 存放到 buffer[1] 中,依次类推

  16. void packet_builder(uint8_t *buffer,uint8_t data)

  17. {

  18. static uint8_t received_bytes = 0;

  19. buffer[received_bytes++] = data;

  20. }


  21. void packet_handler(PACKET_t *packet)

  22. {

  23. if (packet->fields.size > TOO_BIG)

  24. {

  25. //错误

  26. }

  27. if (packet->fields.cmd == CMD)

  28. {

  29. //处理对应的数据

  30. }

  31. }

要理解这个数据解析过程,需要用到 union 中的成员存放在同一个地址这个特性,buffer[PACKET_SIZE]中的元素与 fields 中的元素是一一对应的,用一张图来表示就很清楚了,如下图所示:

看了这张图,我想就很清楚了,往 buffer 里写了数据,直接从 fileds 里面读出来就可以了。

总结

运用好 union 不仅仅是能够节省存储空间,用好地址共享这个特性也能够实现很精妙的效果,笔者之前都没怎么用过 union,这几天关于 union 的学习也使笔者意识到路漫漫其修远兮,但是也引用胡适先生的一句话:怕什么真理无穷,进一寸有一寸的欢喜。

参考资料:

[1] https://www.allaboutcircuits.com/technical-articles/union-in-c-language-for-packing-and-unpacking-data/

[2] https://www.allaboutcircuits.com/technical-articles/learn-embedded-c-programming-language-understanding-union-data-object/.

[3] https://stackoverflow.com/questions/252552/why-do-we-need-c-unions.

END

作者:wenzid
来源:wenzi嵌入式软件

版权归原作者所有,如有侵权,请联系删除。

推荐阅读
为什么俄罗斯不担心芯片禁运?
C语言中比goto还“霸道”的跳转方式
高手常用的3个开源库,让单片机开发事半功倍!

→点关注,不迷路←
嵌入式ARM 关注这个时代最火的嵌入式ARM,你想知道的都在这里。
评论
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 75浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 104浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 173浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 55浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 68浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 145浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 170浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 119浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 127浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 45浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 85浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 100浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦