高光谱相机可将成像技术与光谱探测技术相结合,在对目标空间特征成像的同时,可以对每个空间像元形成多个窄波段实现连续的光谱覆盖,不同光谱信息能充分反映地物内部的物理结构、化学成分的差异。与传统的空间二维成像相比,高光谱相机可以同时获取目标的空间和光谱信息,在一定的空间分辨率下,能够获取宽谱段范围内地物独有的连续特征光谱,对地物的精准识别和探测具有显著优势,目前已成为对地遥感重要的前沿技术手段,在农、林、水、土、矿等资源调查与环境监测等领域具有重要的应用价值。
随着滤光片镀膜技术的飞速发展,极大地促进了滤光片分光型高光谱相机的研制,目前基于滤光片分光原理的高光谱相机以大幅宽、高空间分辨率、高光谱分辨率和轻小型的优势成为高光谱遥感载荷的重要组成部分,在微纳卫星高光谱星座组网中获得广泛应用。
据麦姆斯咨询报道,近期,中国科学院长春光学精密机械与物理研究所刘春雨研究员课题组在《红外与激光工程》期刊上发表了以“滤光片分光型高光谱相机发展现状及趋势”为主题的文章。刘春雨研究员主要从事光学系统设计、光电系统总体设计等方面的研究工作。
高光谱成像原理示意图
这项研究主要对滤光片分光型的高光谱相机进行了综述,介绍了国内外典型滤光片分光型星载高光谱成像载荷,以及地面在研的滤光片分光型高光谱成像系统,并分析了这些系统的技术方案、性能指标及应用前景,阐述了基于滤光片分光原理的高光谱相机的技术特点和优缺点,最后展望了滤光片分光型高光谱相机的发展趋势。
滤光片轮高光谱相机是以滤光片轮为分光元件,通过转动滤光片轮获得不同波段的光谱图像,从而完成复色光到单色光的分光。滤光片轮高光谱相机的关键器件是滤光片轮,可以根据观测波段的不同替换相应谱段范围的滤光片轮,光路结构简单,谱段更换灵活。随着光谱成像技术的发展,探测波段数目越来越多,滤光片轮已无法满足宽谱段高分辨率的观测,因此越来越多地被用于多光谱探测中。
可调谐滤光片高光谱相机以可调谐滤光片为分光元件,根据调谐方式的不同主要分为液晶可调谐滤光片(Liquid Crystal Tunable Filter,LCTF)高光谱相机、声光可调谐滤光片(Acousto-Optic Tunable Filter,AOTF)高光谱相机、MEMS可调谐FP腔滤光片(MEMS Tunable Fabry–Perot Cavity Filters)高光谱相机。
楔形滤光片型高光谱相机也被称为渐变滤光片型高光谱相机,可以实现在光谱区和空间区的连续取样,它的设计理念是将一个楔形多层薄膜介质作为滤光片,并将其安装在紧靠着二维阵列探测器的位置,使探测器的若干像元与渐变滤光片的某一光谱带相互对应。根据渐变滤光片各波段与探测器像元之间的对应关系,渐变滤光片高光谱相机又可以分为线性渐变型和滤光片阵列型。
线性渐变滤光片结构及分光示意图
量子点又称为“纳米晶”,是一种无机材料,自身稳定性高,其半径小于大块的激子波尔半径。将不同种类的量子点集成一起,则可以实现不同波段的同时探测,量子点光谱仪(CQD)就是以此为原理研制的。传统概念上的光谱仪配置了高精度的光学和机械元件,体积笨重、造价昂贵、结构复杂,应用领域严重受限,量子点光谱仪的出现突破了上述局限,为微型光谱仪的推广提供了新思路。
近红外量子点光谱仪原理图
总的来看,滤光片分光型的高光谱相机正处于起步阶段,其光谱分辨率还无法与高精度的光栅色散分光方式相比拟,因此提高系统的光谱分辨率和能量利用率将成为镀膜型高光谱相机总的发展方向,尤其是随着镀膜技术以及量子点等新材料的发展,基于镀膜型的高光谱相机的光谱分辨率和能量利用率已得到了大幅提高,研发成本也有望进一步降低;此外,滤光片与探测器的结合也将进一步提高系统的光谱分辨率,甚至可以与高精度的光栅色散分光相媲美,因此,滤光片和探测器晶元的结合也是镀膜型高光谱相机的一大发展趋势。不难看出,滤光片型高光谱相机的发展将推动高光谱成像领域的颠覆性发展,并由此带动微纳卫星高光谱遥感技术的发展,为未来微纳高光谱卫星星座组网在轨业务运行,更好地服务于国民经济奠定技术基础。
该项目获得国家自然科学基金(41504143)、中国科学院科研装备研制项目(YJKYYQ20190044)、安徽省自然科学基金(1908085 ME135)、中国科学院青年创新促进会(2016203)的支持。