3句话,让你了解自举电容的工作原理!

原创 硬件微讲堂 2022-03-10 08:00

▼关注公众号:硬件微讲堂▼


前两天,有小伙伴在群里问Buck电路的自举电容,让讲一讲。谁知道,脑门一热就答应了……既然牛皮已吹出去了,就算跪着也要写出来!如有不对或不够深入,还请包涵。



1、一道面试题


照例,先抛出来一道面试题:“Buck电路的SW引脚通常会放置一颗小电容,这颗电容有什么用?”。这个问题问得比较细,非常考验被面试者的硬件基本功。


2、似懂非懂的答案


有小伙伴可能不太清楚这颗电容的作用,回答不上来。也有小伙伴脱口而出:自举电容,用来做升压的。但后面好像说不出来具体逻辑。


没具体了解过,答不上来,也没啥可惜的。但是了解过一点,但又似懂非懂的这种,给出的答案只是轻轻点水或者千篇一律,那无疑是错过了一个加分项。


3、异步Buck的自举环路组成


既然是针对Buck电路讲自举电容,前面我们聊过Buck电路有异步和同步之分,想必大家对这个已经很熟悉。我们就先聊聊异步Buck的自举电容,为了更有说服力,就以TI的LMR16006为例。




上图为芯片的典型应用拓扑,Cboot就是我们说的自举电容。为了能清楚的理解自举电容的原理,我们需要深入到Buck芯片内部,去看个究竟。



上图即为异步Buck芯片LMR16006的内部架构。今天我们主要介绍跟Cboot相关的部分,其他的不做展开。

①Q1:NMOS管,是异步Buck电路的开关管;

②HS Driver:Q1的g极驱动电路;

③Q2:NMOS管,用于给Cboot电容充电提供回路;

④两个单向二极管,必要时及时截止,阻止不必要的通路;

⑤VCC:Bootstrap Regulator(自举调整器,翻译得可能不一定恰当),用于从Vin取电并给MOS管高边驱动HS Driver提供偏置电压。



LMR16006的Datasheet上并没有明确给出该Bootstrap Regulator的电压值,只是说低于3V会进入UVLO(Undervoltage lockout thresholds)状态。


4、Cboot充电回路


如下图所示,当高边MOS管Q1关断时,异步Buck电路的电流回路,如绿色箭头所示。这个想必大家都已经熟悉了。



在电感泄放能量的同时,Cboot也开始充电,充电的回路正如上图红色箭头所示:Vin-->VCC-->D-->Cboot-->Q2-->GND。这里我们忽略二极管D1的导通压降,就认为A点的点位约等于0电平。B点的防反二极管导通压降也忽略,那么,Cboot充电完成后的电压约等于VCC。


简单概括:Cboot充/电感放,各走各路!



注意:由于Q2上端有二极管的存在,不会给电感泄放提供第二个回路,所以不会影响电感的正常泄放。


5、浮地驱动


当电感储存的能量泄放完,D1反向截止,而HS Driver要驱动高边MOS管Q1导通时,细心的你会发现:Q2的S极直接接地,G极只要输出高电平(>Vth),Mos管Q2即可导通。而Q1的S极是接在SW(即A点)上,D1已反向截止,Q2也关断,这样就没了回路,我们可以认为Q1是悬浮在半空中。只是单纯的让G极输出高电平,并不能让Q1导通。


正是由于Cboot的存在,而且并联在HS Driver电源两端,电压刚好约等于VCC。这里强调下:Cboot是并联在HS Driver的电源两端(V+/V-),并不是直接并联在MOS管的G和S两端。但HS Driver和MOS是共"参考点"(实际是V-,即A点电位)。


正是Cboot,将原本悬浮的HS Driver的两个电源端V+/V-之间建立了(电位差)联系。这个电位差刚好是VCC。



当逻辑控制单元给HS Driver输入高电平时,HS Drvier立即输出高电平(相对V-,即A点电位而言),驱动高边MOS管的G极。此时,MOS管的Vgs刚好就是Cboot两端的电压(约等于VCC),Vgs>Vth,Q1导通。


简单概括:浮地要驱动,就要加自举。


6、不突变与能持久



Q1导通后,A点电位突变为VIN,及V-电位变成VIN(远远高于VCC电压)。如果V+依旧保持VCC的电位,那Q1恐怕要被迫关闭了!正是由于Cboot的存在,Cboot电容两端电压差不能突变,B点电位变为VIN+VCC。这样对Cboot而言,电压差依然是VCC。对HS Drvier而言,以A点电位为参考,输出高电平时,Vgs依然是VCC,大于Vth,可以让Q1持续导通


简单概况:电压不突变,导通能持久。


7、总结

聊到这里,今天想说的也差不多了,我们大概清楚了异步Buck的自举环路组成、Cboot的充电回路、浮地驱动方式以及上管持续导通的原因。

为了便于理解,概括三句话:

  1. 充电回路:电容充/电感放,各走各路!

  2. 浮地驱动:浮地要驱动,就要加自举!

  3. 持续导通:电压不突变,导通能持久!

以上所述,部分内容涉及个人理解,如有觉得不妥,欢迎留言讨论。

怎么样?一个简短的问题,给出的回答可浅可深,就看你对这个知识点的理解达到怎样的程度。你学废了么?

关注“硬件微讲堂”,硬件路上不慌张!

加入技术交流群,公众号主菜单点击“我要加群” 或者 回复关键字“加群”!

硬件微讲堂 分享硬件开发技术、面试经验,让每一步精进都有迹可循!
评论
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 74浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 134浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 145浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 592浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 194浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 175浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 122浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 158浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 658浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 321浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦