什么是1dB增益压缩点?要如何测试?

面包板社区 2022-03-14 19:59


半导体器件是现代电子工业中十分耀眼的明星,近几十年得到了长足的发展,凭借诸多优势,已广泛应用于控制、转换、放大、运算等功能电路,一直以来备受人们的青睐。爱它就要接受它的缺点,任何事物都有自己的缺点,半导体器件也不例外。对于本文所涉及的射频放大器等有源器件,非线性就是其缺点之一。

非线性是PA、LNA等射频有源器件绕不开的话题,虽然不可避免,但仍然希望尽量保持在比较低的水平,以降低对系统的影响。衡量非线性特性的参数较多,其中1dB增益压缩点通常是必测的项目。非线性是如何产生的,为什么会引起增益压缩,如何测试1dB增益压缩点,这将是下文要重点介绍的内容。

1. 非线性是如何产生的?

半导体器件之所以得到广泛的应用,原因之一就是能够被“控制”,为人们所用。对于一个基本的晶体管,以场效应管为例,通过控制栅极的供电便可以控制晶体管的导通与关断,可以控制漏源之间电流的大小。晶体管可用于设计射频放大器,晶体管转移特性曲线的斜率(跨导) 在一定程度上决定了放大器的增益。然而,晶体管的转移特性曲线并非是线性的,这意味着放大器的增益也不是恒定的。

图1. 晶体管DC特性曲线及信号放大示意图

以共源极放大器为例,栅极作为交流信号输入端口,放大后的信号由漏极输出。当设计好直流工作点Q时,射频信号会叠加在栅极的工作点电压上,然后经过放大输出。图1给出了晶体管典型的转移和输出特性曲线以及交流信号被放大的过程示意图。

当射频输入信号比较小时,如果直流工作点选择得合适,则映射到转移特性曲线上的区域接近于线性,可以近似认为信号是线性放大的。随着射频信号的功率不断增大,映射到转移特性曲线上的区域逐渐呈现为非线性,此时放大的波形已与输入信号有明显不同,失真越来越明显。这种失真并不是波形整体放大或缩小这种线性失真,而是非线性的失真。

以图1为例,考虑一种极端的情况:假设已经选定直流工作点,当输入信号增大到使得栅源电压Vgs在部分时刻低于导通阈值电压时,在这些时刻晶体管就会关闭,当然也就没有输出波形,因此输出波形会严重失真,这也意味着放大器已经处于严重的非线性工作状态!

如果直流工作点选择得合适,放大器可能在很宽的输入功率范围内都不会存在明显的非线性失真;而如果选择得不合适,比如靠近导通阈值电压,那么即使输入信号较小,也可能会存在明显的非线性失真。

说到这,影响放大器线性度的因素主要包括:非线性的转移特性,直流工作点的选择以及输入信号的强弱。

半导体器件的非线性失真机理可能远比上述介绍复杂,但上述三个因素至少是其中部分原因,这也让一直将非线性挂在嘴边的射频工程师向“知其然,知其所以然”的目标又迈进了一步。

非线性特性并不是“一无是处”,对于放大器而言确实是有害的,但是有些器件就是要利用这种特性实现特定的功能,比如乘法器、混频器、倍频器等,关键视具体应用而定。

2. 什么是1dB增益压缩点?

通常可以将非线性电路的输出信号进行泰勒(Taylor) 级数展开,更具体地讲,应该是麦克劳林(Maclaurin) 级数展开:

式中,vin(t) vout(t) 分别为输入和输出信号,c为级数展开常系数。

对于放大器,当馈入单频点信号时,其输出特性又是怎样的呢?

令vin (t)=V0 cosω0 t ,代入上式可得

可将上式中各个分项展开如下

对于偶数幂次,积化和差后只有DC分量及偶次谐波分量,可简写为2i·ꞷ为非负整数;

对于奇数幂次,积化和差后只有奇次谐波分量(2i+1)·ꞷ0为非负整数。

由此可见,因放大器的非线性特性,当输入单频点信号时,其输出信号除包含被放大的原频点信号外,还会再生一些新的频率分量,频率再生也成为非线性失真的一个特点。

对于频率分量,其输出项为

Taylor级数展开后,阶数越高,常系数c越小,因此,为了方便,上式中只考虑前三项,忽略高次项。

则放大器的电压增益为

可以将增益分为两部分:线性放大增益,以及因输入信号影响而贡献的增益。

G=c1+∆G(V0)

理论上,期望放大器是理想线性的,无论输入功率多大,输出功率都是线性增加的,即增益都是恒定不变的。但事实是,当输入功率较大时,放大器会进入非线性工作区域,导致增益压缩。因此,上式中∆G(V) 是小于0的。

当输入功率较低时,与输入信号相关的增益部分趋于0,则此时的增益接近于线性增益。随着输入功率的不断增大,输出功率近似线性增加,增大到一定程度,非线性越来越明显,导致增益压缩,输出功率增长速度放缓,最后逐步趋于饱和稳定,输入、输出功率之间的关系如图2所示。

图2. 放大器的增益压缩特性及1dB增益压缩点

如何解读图2中的曲线关系?

首先需要明确的是,这是输入、输出功率的对数表示,因此理想线性放大器的曲线斜率为1,如图中虚线所示。实线表征的是放大器实际输入、输出功率之间的关系,随着输入功率的增大,输出功率增大得速度变慢,越来越偏离理想的曲线,增益逐步变低,这就是增益压缩效应。

Pout (dBm)=Pin ( dBm)+G(dB)

放大器等有源器件通常关注实际增益比线性增益跌落1dB的位置,称之为1dB增益压缩点,该点对应的输入、输出功率一般分别标记为P1dB,in P1dB,out 

1dB增益压缩点越高越好,两个放大器相比较,谁的压缩点越高,意味着谁的线性度越好。无线通信系统中,信号通常都具有一定的带宽,如果总功率接近于1dB压缩点,则放大器非线性越趋于明显,就会产生比较强的谐波、交调产物,从而对邻带或带内造成干扰。因此,非线性失真是放大器设计中一个非常重要的考量因素。

3. 如何测试1dB增益压缩点?

前面简要地介绍了非线性导致增益压缩的基本内容,那么实际中如何测试1dB增益压缩点呢?

1dB增益压缩点的测试方法较灵活,通过矢量网络分析仪自动测试,可以自动测试一维/二维扫描时的压缩点;也可以基于信号源和频谱仪甚至是功率计进行手动测试,这将是下面要着重介绍的方法。

信号源输出功率与设定值有一定的偏差,而且测试所需要的线缆、衰减器等附件都有一定的损耗,那么需要对这些提前标定吗?

由于P1dB 测试的是绝对功率,所以以上因素还是影响测试结果的。但是,也没有必要进行全面的标定。下面介绍的P1dB 测试思路是,首先确定信号源输出功率设置多少时增益压缩1dB,然后记录该设置功率和频谱仪测得的功率,最后再扣除线缆和附件的损耗分别确定1dB压缩点的输入、输出功率及增益。

值得一提的是,该测试要求信号源输出功率的线性度较好,否则会带来较大的测试误差。好在通用的射频源在很宽的功率范围内都具有良好的线性度。

当然,为了进一步提高测试精度,也可以考虑使用功率计对信号源在一定功率范围内进行功率校准,进一步改善输出功率线性度。

图3. 1dB增益压缩点测试的典型连接示意图

实际测试时,具体操作步骤如下:

(1) 测前准备:选择性能较好的射频线缆、转接头及合适的高功率容量衰减器,对于线缆和转接头,尤其要保证在测试频段内的VSWR要良好;高功率容量衰减器仅仅在测试PA时需要,以保护测试设备,对于小信号放大器的测试,使用频谱仪内置的衰减器足矣。

(2) 测试连接:按照图3完成测试连接,如果测试PA,则需要在其后引入合适的衰减器,此时要保证信号源没有射频信号输出。

(3) 参数设置:设置信号源的频率、功率及功率步进,频率根据测试频点设置,建议先设置一个低功率,保证放大器工作在近似线性区域。设置频谱仪的中心频率CF和Span,因为测试单频点信号,建议Span不要太大,内部衰减度的设定需要根据放大器的输入功率、增益及外部衰减度综合考虑。

(4) 打开放大器:注意上电顺序,尤其是对于PA而言,详见下面的注意事项。建议先给栅极上电,再给漏极上电。

(5) P1dB 测试:打开信号源的输出开关,调整频谱仪的参考电平、衰减度,使得CW信号频谱得到良好的显示,并保证有足够的信噪比。调出频谱仪的peak marker,一并记录信号源设置的功率Pin,1 及peak marker的功率Pout,1 

不断地增大信号源输出的功率,可以通过信号源的导航键按照步骤(2) 中设定的步进逐步增大功率,并观测频谱仪测得的功率。当信号源的功率调整到Pin,n,且满足如下公式

Pin,n-Pin,1-(Pout,n-Pout,1)=1dB

则完成了P1dB 测试的第一步,但是Pin,n Pout,n 还不是1dB增益压缩点输入、输出功率。

Pout,n 是放大器输出功率经过后级线缆、衰减器等附件后测得的功率,因此补偿这些损耗后便得到P1dB,outPin,n是放大器增益压缩1dB时信号源设置的功率,去掉放大器,直接使用频谱仪测试放大器输入侧的功率即为P1dB,in 。1dB压缩点对应的放大器增益则为

G1dB=P1dB,out-P1dB,in

P1dB 测试需要注意哪些事项?

首先放大器上电顺序要正确,尤其是功率放大器。对于GaAs、GaN放大器,目前大部分采用的都是耗尽型晶体管设计,栅源电压为0V时便是打开的状态,因此这类放大器的栅极一般都工作在负压状态。对于这类放大器,出于保护的目的,一定要先加负栅压,再加漏极电压。

其次,测试PA时,必须要根据其最大输出功率选择合适的衰减器,以免功率过高烧坏频谱仪的射频前端。频谱仪内部衰减器通常最多只能耐受1W的功率,所以经过外部衰减器后的功率一定要远小于该值。

最后,考虑到测试精度,可以在放大器前后各引入一个合适的衰减器,以改善输入、输出匹配。对于PA的测试,由于对驱动功率有一定的要求,PA之前的衰减度不宜太大,要保证信号源经该衰减器后的功率仍然可以驱动PA正常工作。

此外,还要避免频谱仪进入非线性区域,可以参考频谱仪的规格书查找其P1dB,只要测试时馈入频谱仪的功率低于该值至少6dB以上,那么频谱仪自身的非线性带来的影响便可以忽略。

还有一种简单的判断方法,当找到1dB压缩点时,手动增大频谱仪的衰减度,如果测得的信号功率基本不变,那么说明频谱仪没有明显的非线性;如果增大衰减度,测得功率反而变大,则说明频谱仪的射频前端已经压缩了,需要进一步增大衰减度直到测得功率稳定,然后继续增大信号源输出功率,寻找放大器真正的1dB压缩点。

最后,留一个开放性的问题:对于PA,可能存在这样的情况,在激励功率递增时,增益并不总呈现单调降低趋势,比如随着激励功率的提高,PA增益可能先增大后又降低,那么标定1dB增益压缩点时,应该以哪个增益(或者功率)作为参考呢?

以上便是要给大家分享的内容,希望对大家有所帮助~~

END
点击上方“面包板社区”,选择“置顶/星标公众号”

电子技术干货,第一时间送达

  • 220V灯串电路原理原来是这样的!

  • 国产MCU,王牌对王牌

  • 电视机的按键功能是用什么电路实现的?经典ADC按键电路

  • 小小的电蚊拍居然有这么多个基础电路,你能看懂几个?

  • 220V灯串电路原理原来是这样的!

  • 别小看不起眼的电阻,里面大有学问!

面包板社区 面包板社区——中国第一电子人社交平台 面包板社区是Aspencore旗下媒体,整合了电子工程专辑、电子技术设计、国际电子商情丰富资源。社区包括论坛、博客、问答,拥有超过250万注册用户,加入面包板社区,从菜鸟变大神,打造您的电子人脉社交圈!
评论
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 92浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 138浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 85浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 103浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 141浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 142浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 143浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 114浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 107浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 90浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 126浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 109浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 170浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦