CPU为什么很少会坏?CPU出厂如何测试?

EETOP 2022-03-13 17:38

在计算机的一生中,CPU坏的概率极小。正常使用的情况下,就算其他主要的电脑配件都坏了,CPU都不会坏。

CPU出现损坏的情况,多数都是外界原因。最主要的就是长期在超频下工作,且散热性差,引起电子热迁移导致的损坏。

现在的个人电脑的更新换代基本不是由于CPU损坏才换的,主要是因为软件不断的升级、越来越大,造作系统的垃圾越来越多导致卡顿,让你无法忍受,才换电脑的。

CPU在出厂之前,是经过非常严格的测试的,甚至在设计之初,就要考虑测试的问题。可以从pre-silicon、post-silicon和硅的物理性质等方面来解释这个问题。

1、CPU被做成产品之前被检出缺陷

这一个阶段也就是芯片tape out之后,应用到系统或者产品之前。

事实上,在现在的芯片设计中,在设计之初就已经为芯片的制造,测试,以及良率做考虑了。保证这一步能检测出芯片的缺陷,主要是DFT+ATE来保证。当然也有一些公司会做DFD和DFM。

DFT = Design For Test

DFD = Design For Debug

DFM = Design for Manufacture

DFT指的是在芯片的设计阶段即插入各种用于提高芯片可测试性(包括可控制性和可观测性)的硬件电路,通过这部分逻辑,生成测试向量,使测试大规模芯片变得容易的同时,尽量减少时间以节约成本。

DFT--可测性设计,按流程划分,依然属于设计阶段(pre-silicon),只不过是为测试服务的。

而ATE(Auto Test Equipment )则是在流片之后,也就是post-silicon阶段。

ATE测试就是为了检查制造缺陷过程中的缺陷。芯片测试分两个阶段,一个是CP(Chip Probing)测试,也就是晶圆(Wafer)测试。另外一个是FT(Final Test)测试,也就是把芯片封装好再进行的测试。

CP测试的目的就是在封装前就把坏的芯片筛选出来,以节省封装的成本。同时可以更直接的知道Wafer 的良率。CP测试可检查fab厂制造的工艺水平。现在对于一般的wafer成熟工艺,很多公司多把CP给省了,以减少CP测试成本。具体做不做CP测试,就是封装成本和CP测试成本综合考量的结果。

一片晶圆越靠近边缘,die(一个小方格,也就是一个未封装的芯片)出问题的概率越大。测出坏的芯片根据不同坏的情况不同,也会分bin,最终用作不同的用途。

所以在芯片被做成成品之前,每一片芯片都是经过量产测试才发货给客户的。

2、做成成品出厂以后,在使用过程中坏掉了

就单个晶体管来看,在正常使用过程中,真的那么容易坏掉吗?其实不然。

硅由于物理性质稳定,禁带宽度高(1.12ev),而且用作芯片的硅是单晶硅,也很难发生化学反应,在非外力因素下,晶体管出问题的概率几乎为零。

即使如此,芯片在出场前,还要经过一项测试,叫“老化测试”,是在高/低温的炉里经过 135/25/-45摄氏度不同温度以及时间的测试,以保证其稳定性和可靠性。

根据芯片的使用寿命根据浴盆曲线(Bathtub Curve),分为三个阶段,第一阶段是初期失效:一个高的失效率。由制造,设计等原因造成。第二阶段是本征失效:非常低的失效率,由器件的本征失效机制产生。第三个阶段:击穿失效,一个高的失效率。而在计算机正常使用的时候,是处在第二阶段,失效的概率非常小。

但是,耐不住有上百亿个晶体管啊...... 所以,还是有坏的概率的。

就算是某个晶体管坏了,芯片设计中会引入容错性设计,容错性设计又可以从软件和硬件两个方面来实施。

比如多核CPU可以通过软件屏蔽掉某个坏的核心,ATE测试后根据不同缺陷分bin的芯片,也会用在不同的产品上,毕竟流片是十分昂贵的。比如Intel的i3,i5,i7等。当然,也不是所有的i3都是i5、i7检测出来的坏片。

再比如存储器中一般存在冗余的信号线和单元,通过检查发现有问题的单元,从而用冗余的模块替换有缺陷的模块,保证存储的正常使用。

比如下面橙色的为冗余的memory,红色的是坏的memory,我们便可以通过算法把红色memory的地址映射到橙色备用的一个memory上。

芯片测试是极其重要的一环,有缺陷的芯片能发现的越早越好。如果把坏的芯片发给客户,不仅损失巨大,对公司的声誉也会造成负面的影响。

在芯片领域有个十倍定律,从设计-->制造-->封装测试-->系统级应用,每晚发现一个环节,芯片公司付出的成本将增加十倍!!!

高质量的测试是由DFT,ATE,diagnosis,EDA等多方面协作完成的,尤其在超大规模集成电路时代,测试变得越来越难,越来越重要,其开销在整个芯片流程中也占有很大的比重。芯片作为工业皇冠上的明珠,所有电子系统的大脑,是万万不能出问题的!

来源:OpenIC

芯片就业培训课程推荐

团购了!畅销就业培训课《芯片验证从入门到精通》

EETOP EETOP半导体社区-国内知名的半导体行业媒体、半导体论坛、IC论坛、集成电路论坛、电子工程师博客、工程师BBS。
评论 (0)
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 302浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 538浏览
  •  一、‌核心降温原理‌1、‌液氮媒介作用‌液氮恒温器以液氮(沸点约77K/-196℃)为降温媒介,通过液氮蒸发吸收热量的特性实现快速降温。液氮在内部腔体蒸发时形成气-液界面,利用毛细管路将冷媒导入蒸发器,强化热交换效率。2、‌稳态气泡控温‌采用‌稳态气泡原理‌:调节锥形气塞与冷指间隙,控制气-液界面成核沸腾条件,使漏热稳定在设定值。通过控温仪调整加热功率,补偿漏热并维持温度平衡,实现80K-600K范围的快速变温。二、‌温度控制机制‌1、‌动态平衡调节‌控温仪内置模糊控制系统,通过温度
    锦正茂科技 2025-04-30 11:31 30浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 442浏览
  • 在全球制造业加速向数字化、智能化转型的浪潮中,健达智能作为固态照明市场的引领者和智能电子以及声学产品的创新先锋,健达智能敏锐捕捉到行业发展的新机遇与新挑战,传统制造模式已难以满足客户对品质追溯、定制化生产和全球化布局的需求。在此背景下, 健达智能科技股份有限公司(以下简称:健达智能)与盘古信息达成合作,正式启动IMS数字化智能制造工厂项目,标志着健达智能数字化转型升级迈入新阶段。此次项目旨在通过部署盘古信息IMS系统,助力健达实现生产全流程的智能化管控,打造照明行业数字化标杆。行业趋势与企业挑战
    盘古信息IMS 2025-04-30 10:13 33浏览
  • 想不到短短几年时间,华为就从“技术封锁”的持久战中突围,成功将“被卡脖子”困境扭转为科技主权的主动争夺战。众所周知,前几年技术霸权国家突然对华为发难,导致芯片供应链被强行掐断,海外市场阵地接连失守,恶意舆论如汹涌潮水,让其瞬间陷入了前所未有的困境。而最近财报显示,华为已经渡过危险期,甚至开始反击。2024年财报数据显示,华为实现全球销售收入8621亿元人民币,净利润626亿元人民币;经营活动现金流为884.17亿元,同比增长26.7%。对比来看,2024年营收同比增长22.42%,2023年为7
    用户1742991715177 2025-05-02 18:40 48浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 283浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 336浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 49浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 36浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦