一种高速互连通道的信号完整性仿真研究

射频百花潭 2022-03-08 09:42

   对高速互连通道的信号完整性问题进行了研究,着重以数字激励源与 D/A 转换器评估板互连通道为例,分别对组成高速互连通道的微带线、过孔进行了建模分析。同时创建了整个高速互连通道的仿真模型,对高速互连通道的时域响应进行仿真,生成数据眼图,通过数据眼图评估传输通道的信号质量。



1

引言

随着高速电子系统工作频率的不断提高和信号边沿翻转速度的加快,高速数字 PCB 的互连设计对整个系统电气性能的影响也越来越大。对于低速电路,PCB 板的互连线可以看作是简单的金属导线,仅仅起着电气连通的作用。但是,在高速电路中,互连线就不能仅仅当作金属导线,而需要作为传输线来处理,由于封装、微带线、过孔、连接器等的寄生效应影响以及损耗,导致接收信号波形不完整和系统时序上的错误。因此,高速系统设计尤其是 PCB 进行板级和系统级设计时,必须考虑互连效应所引起的信号完整性问题。

2

信号完整性的定义


信号完整性是指传输系统在信号传输过程中保持信号时域和频域特性的能力。它表明信号通过信号线传输后仍能保持其正确的功能特性,即信号在电路中能以正确的时序、幅度及相位等做出响应。如果电路中信号能够以要求的时序和电压幅度到达接收端,就表明该电路具有较好的信号完整性。反之,信号能正常响应时,就出现了信号完整性问题。

根据信号完整性的定义,我们要关注两个方面的问题:信号质量和信号时序。保证可靠的高速数据传输是信号完整性分析的目的。信号完整性实质上与振铃、串扰、地弹和电源噪声有关。因此,信号会受到电路逻辑系列、电源传输网络以及高速数字设计等方面的影响,这些错误的、实际的影响会导致电压和电流波形失真以及信号抖动,从而导致开关误动作和逻辑错误 。

2.1

信号质量


   信号质量就是分析接收端得到的电压波形,确保接收端正确采样,如图 1 所示指出了信号完整性分析的主要问题。

(1)V>V max 或 V

(2)V>V hmax :过冲;

(3)V hmax >V>V inh :逻辑“l”;

(4)V inh >V>V inl :逻辑状态不确定;

(5)V inl >V>V lmin :逻辑“0”;

(6)V

此外,信号出现振铃、非单调、抖动也会影响到接收端的逻辑判决,同时还会影响时序。

图 1 信号完整性示意图

2.2

信号时序

时序完整性:以同步时钟信号为基准的时序计算到达设计要求,有足够的建立时间裕量、保持时间裕量、低的时钟抖动等以保证数据采集正确。其中涉及传输时间、飞行时间、建立时间、保持时间、时钟抖动、时钟偏移等参数。


3

高速互连通道建模及眼图分析


本文以数字激励源与 D/A 转换器评估板高速互连通道为例,如图 2 所示,该通道包括驱动端 buffer 连接器、差分微带线、过孔、接收 buffer,提取微带线、连接器以及过孔模型,并与电路的驱动、接收端的 IBIS模型相结合,在时域中仿真,生成数据眼图,并通过数据眼图来评估经过传输通道的信号质量。

图 2 高速互连通道示意图

3.1

微带线建模

面对日益升高的数字电路频率和复杂的寄生效应,无导体损耗和介质损耗的理想传输线是不存在的,图 3 所示为传输线的微分段等效电路模型。其中,串联电阻 R dz 代表由于导线电导率有限而引起的损耗,并联电导 G dz 代表由于分隔导线和地平面的介质阻抗有限而引起的损耗,串联电感 L dz 代表磁场,并联电容 C dz 代表导线和地平面之间的电场 。

图 3 传输线的微分段等效电路模型(RLCG 模型)

本仿真采用了 Ansoft 的 Siwave 提取微带线模型,Ansoft 提供了与当前业界主流 PCB Layout 工具( 如 Allegro、Board Station、PADS、Expedition、Zuken等) 之间方便快捷的接口。我们目前采用 Allegro 与Siwave连接。首先将PCB文件导入Siwave,如图4所示。

图 4 PCB 板导入 Siwave 工程图

该 PCB 文件规则检查运行完之后,设置需要提取模型的走线端口,同时设置其参考地阻抗 50 Ω 以及就近的参考地网络。本例共提取了 14 对差分线的模型,通过设置扫描频率(0 Hz~3 GHz),采样点 200 点,计算其 S、Y、Z 参数,得到如图 5、图 6 所示的 S11、S21参数结果,同时可以得到微带线 SNP 文件,用在时域中仿真。

图 5 微带线 S11 参数

由图 5、图 6 可知,S11 在-10 dB 以下,表明能量反射回来较少,但仍未达到最理想的效果,一般要求在-20 dB 以下,而 S21 随着频率的增加衰减明显,到3 GHz 时已达到-6 dB。

图 6 微带线 S21 参数

3.2

过孔建模

过孔是指 PCB 板上钻的小孔,用于连接 PCB 板的不同叠层。典型的过孔由金属柱、焊盘和反焊盘组成。由于通孔的不连续性结构,当其在低频情况下我们完全可以将其看作一条普通的导线,但在高频的情况下通孔则会产生寄生电容和电感,通孔寄生电容估算如下:

其中 C 是通孔的电容,单位为 pF。D 2 是反焊盘直径(in),D 1 是焊盘直径 (in),T 是印刷电路板的厚度(in),ε r 是电路板的介电常数。

此外,过孔还存在寄生电感,其计算如下  :

其中 L 是通孔的电感,单位 nH;h 为通孔的长度(in);d 为通孔直径(in);根据以上公式可以看出,过孔的寄生电容、寄生电感与孔径、焊盘反焊盘参数有关。

Ansoft 提供了专用的过孔建模软件,通过设置过孔焊盘、反焊盘、孔径大小以及 PCB 板叠层厚度、介电常数,并直接导入 HFSS 中,得到过孔模型如图 7 所示。

图 7 过孔建模

通过仿真可以得出反焊盘半径变化时散射参数S11 和 S21 的变化曲线,图 8、图 9 分别为反焊盘半径为 330 μm、355.6 μm、381 μm、406.4 μm、432 μm 时的S11 和 S21 变化曲线。由图 8、图 9 可知,随着反焊盘半径的增加,反射系数 S11 愈小,传输系数 S21 愈大,信号传输最佳。因此,设计过孔时可以通过优化过孔的各种参数来优化信号传输性能。

图 8 不同反焊盘的 S11 参数

图 9 不同反焊盘的 S21 参数

3.3

整个高速互连通路后仿真眼图分析

根据前面提取的微带线、过孔模型结果以及厂商提供的连接器模型,加入驱动端 xlinx virtex5 IBIS 模型,接收端 D/A 转换器 IBIS 模型以及加入激励信号PRBS (伪随机码源),并设置属性如下:数字 0 电压V 1 =0 V;数字 1 电压 V 2 =2.5 V;信号上升和下降时间t RF =0.01 ns;信号脉冲宽度 PW=1.6 ns;随机码初始种子SEED=0。导入 Ansoft designer 中最终得到整个链路仿真电路图,如图 10 所示。

图 10 高速互连通道仿真电路图

图 11 高速互连通道仿真眼图

图 12 改善后的眼图

通过运行瞬态仿真并创建眼图,结果如图 11 所示。从图 11 可知,经过微带线、连接器、过孔传输通道后,眼圈逐渐闭上,信号抖动比较明显,信号质量逐渐劣化。因此,我们对 PCB 板进行了优化:高速信号采用差分线设计的同时,当差分线离开 IC 或连接器时,应尽早靠近在一起走线保持平衡性,这有助于消除反射并抑制共模噪声;互连线改变传输方向时,采用 45°拐角或者是弧形拐弯;差分对的两根导线之间的距离应当保持恒定,避免差分阻抗的不连续性;如果走线中过孔不能避免,则尽量优化孔径尺寸、焊盘和反焊盘,使得过孔阻抗与传输线阻抗保持一致,使信号衰减最小;高速信号周围多打接地过孔,使信号有最短的回流路径和最佳的传输性能。选用连接器时,应选用损耗较小的高速连接器。此外,适当的端接策略以及系统中各部分的优化,可以达到信号完整性的优化,解决或降低信号振铃、反射、传输延迟、串扰、噪声等问题。通过一系列的优化,再次仿真得到图 12,从图中我们可知,眼圈张开,眼幅度增大,抖动减小,信号质量得到改善。


4

结论


   通过对高速互连通道的仿真分析得知,随着信号频率的增加,影响互连的因素越来越多,研究互连对信号完整性的影响也更加复杂 。PCB 设计者需要更加熟悉高频条件下互连的影响,并且使用更为准确的互连模型、有效的仿真工具和科学的分析方法,才能提高系统工作的可靠性,保证产品一次设计成功。

来源:电子与封装

声明:


本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有。

投稿/招聘/推广/宣传 请加微信:15989459034

射频百花潭 国内最大的射频微波公众号,专注于射频微波/高频技术分享和信息传递!
评论 (0)
  • 文/郭楚妤编辑/cc孙聪颖‍不久前,中国发展高层论坛 2025 年年会(CDF)刚刚落下帷幕。本次年会围绕 “全面释放发展动能,共促全球经济稳定增长” 这一主题,吸引了全球各界目光,众多重磅嘉宾的出席与发言成为舆论焦点。其中,韩国三星集团会长李在镕时隔两年的访华之行,更是引发广泛热议。一直以来,李在镕给外界的印象是不苟言笑。然而,在论坛开幕前一天,李在镕却意外打破固有形象。3 月 22 日,李在镕与高通公司总裁安蒙一同现身北京小米汽车工厂。小米方面极为重视此次会面,CEO 雷军亲自接待,小米副董
    华尔街科技眼 2025-04-01 19:39 225浏览
  • 职场之路并非一帆风顺,从初入职场的新人成长为团队中不可或缺的骨干,背后需要经历一系列内在的蜕变。许多人误以为只需努力工作便能顺利晋升,其实核心在于思维方式的更新。走出舒适区、打破旧有框架,正是让自己与众不同的重要法宝。在这条道路上,你不只需要扎实的技能,更需要敏锐的观察力、不断自省的精神和前瞻的格局。今天,就来聊聊那改变命运的三大思维转变,让你在职场上稳步前行。工作初期,总会遇到各式各样的难题。最初,我们习惯于围绕手头任务来制定计划,专注于眼前的目标。然而,职场的竞争从来不是单打独斗,而是团队协
    优思学院 2025-04-01 17:29 205浏览
  • 探针本身不需要对焦。探针的工作原理是通过接触被测物体表面来传递电信号,其精度和使用效果取决于探针的材质、形状以及与检测设备的匹配度,而非对焦操作。一、探针的工作原理探针是检测设备中的重要部件,常用于电子显微镜、坐标测量机等精密仪器中。其工作原理主要是通过接触被测物体的表面,将接触点的位置信息或电信号传递给检测设备,从而实现对物体表面形貌、尺寸或电性能等参数的测量。在这个过程中,探针的精度和稳定性对测量结果具有至关重要的影响。二、探针的操作要求在使用探针进行测量时,需要确保探针与被测物体表面的良好
    锦正茂科技 2025-04-02 10:41 77浏览
  • 退火炉,作为热处理设备的一种,广泛应用于各种金属材料的退火处理。那么,退火炉究竟是干嘛用的呢?一、退火炉的主要用途退火炉主要用于金属材料(如钢、铁、铜等)的热处理,通过退火工艺改善材料的机械性能,消除内应力和组织缺陷,提高材料的塑性和韧性。退火过程中,材料被加热到一定温度后保持一段时间,然后以适当的速度冷却,以达到改善材料性能的目的。二、退火炉的工作原理退火炉通过电热元件(如电阻丝、硅碳棒等)或燃气燃烧器加热炉膛,使炉内温度达到所需的退火温度。在退火过程中,炉内的温度、加热速度和冷却速度都可以根
    锦正茂科技 2025-04-02 10:13 78浏览
  • 北京贞光科技有限公司作为紫光同芯授权代理商,专注于为客户提供车规级安全芯片的硬件供应与软件SDK一站式解决方案,同时配备专业技术团队,为选型及定制需求提供现场指导与支持。随着新能源汽车渗透率突破40%(中汽协2024数据),智能驾驶向L3+快速演进,车规级MCU正迎来技术范式变革。作为汽车电子系统的"神经中枢",通过AEC-Q100 Grade 1认证的MCU芯片需在-40℃~150℃极端温度下保持μs级响应精度,同时满足ISO 26262 ASIL-D功能安全要求。在集中式
    贞光科技 2025-04-02 14:50 132浏览
  • 文/Leon编辑/cc孙聪颖‍步入 2025 年,国家进一步加大促消费、扩内需的政策力度,家电国补政策将持续贯穿全年。这一利好举措,为行业发展注入强劲的增长动力。(详情见:2025:消费提振要靠国补还是“看不见的手”?)但与此同时,也对家电企业在战略规划、产品打造以及市场营销等多个维度,提出了更为严苛的要求。在刚刚落幕的中国家电及消费电子博览会(AWE)上,家电行业的竞争呈现出胶着的态势,各大品牌为在激烈的市场竞争中脱颖而出,纷纷加大产品研发投入,积极推出新产品,试图提升产品附加值与市场竞争力。
    华尔街科技眼 2025-04-01 19:49 213浏览
  • 引言随着物联网和智能设备的快速发展,语音交互技术逐渐成为提升用户体验的核心功能之一。在此背景下,WT588E02B-8S语音芯片,凭借其创新的远程更新(OTA)功能、灵活定制能力及高集成度设计,成为智能设备语音方案的优选。本文将从技术特性、远程更新机制及典型应用场景三方面,解析该芯片的技术优势与实际应用价值。一、WT588E02B-8S语音芯片的核心技术特性高性能硬件架构WT588E02B-8S采用16位DSP内核,内部振荡频率达32MHz,支持16位PWM/DAC输出,可直接驱动8Ω/0.5W
    广州唯创电子 2025-04-01 08:38 169浏览
  • 在智能交互设备快速发展的今天,语音芯片作为人机交互的核心组件,其性能直接影响用户体验与产品竞争力。WT588F02B-8S语音芯片,凭借其静态功耗<5μA的卓越低功耗特性,成为物联网、智能家居、工业自动化等领域的理想选择,为设备赋予“听得懂、说得清”的智能化能力。一、核心优势:低功耗与高性能的完美结合超低待机功耗WT588F02B-8S在休眠模式下待机电流仅为5μA以下,显著延长了电池供电设备的续航能力。例如,在电子锁、气体检测仪等需长期待机的场景中,用户无需频繁更换电池,降低了维护成本。灵活的
    广州唯创电子 2025-04-02 08:34 159浏览
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 152浏览
  • 引言在语音芯片设计中,输出电路的设计直接影响音频质量与系统稳定性。WT588系列语音芯片(如WT588F02B、WT588F02A/04A/08A等),因其高集成度与灵活性被广泛应用于智能设备。然而,不同型号在硬件设计上存在关键差异,尤其是DAC加功放输出电路的配置要求。本文将从硬件架构、电路设计要点及选型建议三方面,解析WT588F02B与F02A/04A/08A的核心区别,帮助开发者高效完成产品设计。一、核心硬件差异对比WT588F02B与F02A/04A/08A系列芯片均支持PWM直推喇叭
    广州唯创电子 2025-04-01 08:53 196浏览
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 206浏览
  • 随着汽车向智能化、场景化加速演进,智能座舱已成为人车交互的核心承载。从驾驶员注意力监测到儿童遗留检测,从乘员识别到安全带状态判断,座舱内的每一次行为都蕴含着巨大的安全与体验价值。然而,这些感知系统要在多样驾驶行为、复杂座舱布局和极端光照条件下持续稳定运行,传统的真实数据采集方式已难以支撑其开发迭代需求。智能座舱的技术演进,正由“采集驱动”转向“仿真驱动”。一、智能座舱仿真的挑战与突破图1:座舱实例图智能座舱中的AI系统,不仅需要理解驾驶员的行为和状态,还要同时感知乘员、儿童、宠物乃至环境中的潜在
    康谋 2025-04-02 10:23 103浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦