台积电5nm,看这篇就够了!

SSDFans 2020-01-16 06:10


在上个月IEEE IEDM会议上,台积电发表了一篇论文,概述了其5nm工艺的初步成果。对于目前使用N7或N7P工艺的客户来说,下一步将会采用此工艺,因为这两种工艺共享了一些设计规则。新的5nm制程使用了台积电的第五代FinFET技术,在7纳米基础上提供一个完整的工艺节点,并使用EUV极紫外光刻技术扩展到10多个光刻层,与7纳米相比减少了生产总步骤。

关键数字

如果你只是来了解关键数字的,那答案就在这里。台积电表示,他们的5nm EUV工艺使得晶体管密度增加到大致1.84倍,能效提升15%,功耗减少30%。目前的测试芯片(包括256 Mb的SRAM和一些逻辑单元),平均良率80%,峰值良率达到90%以上,不过这些芯片相对简单,如果放到复杂的移动芯片上,良率要低得多。该技术目前处于风险试产阶段,计划在2020年上半年量产。这意味着基于5nm的芯片将在2020年下半年面世。

台积电的7nm工艺在使用高密度库时,每平方毫米可生产近1亿个晶体管,约为9627万个,这意味着5nm应该是每平方毫米1.7714 亿个晶体管左右。

详解良率

作为风险试产的一部分,代工厂会生产大量的测试芯片,以验证其新工艺可以达到预期。对于5nm制程,台积电披露了两种测试芯片:一种基于SRAM,另一种结合了SRAM、逻辑单元和IO单元。

对于SRAM测试芯片,台积电展示了它同时具有高电流(HC)和高密度(HD) SRAM单元,单元面积分别为25000 nm2和21000 nm2。台积电正积极推广其HD SRAM单元,号称其面积是有史以来最小的。

对于第二种组合测试芯片,台积电表示该芯片由30%的SRAM、60%的逻辑(CPU/GPU)和10%的IO组成。在这个芯片中SRAM大小为256Mb,这意味着我们可以计算出其面积。在21000 nm2的情况下,一个256 Mb SRAM的die面积为5.376 mm2。台积电表示,这个芯片不包括自我修复电路,我们不需要添加额外的晶体管来实现这一功能。如果SRAM占整个芯片的30%,那么整个芯片面积在17.92 mm2左右。

对于该芯片,台积电公布的平均良率约为80%,单晶圆峰值良率超过90%。了解了良率和芯片面积之后,我们可以使用一个计算器来推断缺陷率。为了简单起见,假设芯片是正方形的,我们可以通过调整缺陷率使之等于80%的良率。使用计算器,一个300mm晶圆可以生产3252颗面积为17.92 mm2的芯片。80%的良率意味着每个晶圆有2602个完好芯片,这相当于每平方厘米有1.271个缺陷。

当然,一个17.92 mm2的芯片并不能代表现代高性能芯片。新工艺上的第一个芯片通常是移动处理器,特别是高性能的移动处理器,它可以分摊新工艺的高额成本。近年来,这些芯片的尺寸越来越大(主要是为了支持调制解调器),如在7nm EUV上构建的麒麟990 5G面积超过100 mm2,接近110 mm2。至于AMD的Zen 2芯片,由于它采用非EUV的工艺,反而更适合迁移到5nm EUV,然而这种迁移要到后面才会出现,并将使用高性能的非密集的库。

在这种情况下,让我们以100 mm2的移动处理器芯片为例,同样,假设芯片为正方形,每平方厘米1.271的缺陷率对应32.0%的良率。这对于处于风险试产阶段的工艺来说结果是非常好的。100 mm2芯片的良率达到32.0%,对于一些想要抢占先机的早期用户来说已经足够了。

(如果将此缺陷率对应到尺寸为10.35×7.37mm的Zen 2芯片,这相当于41.0%的良量。)

台积电测试芯片:CPU和GPU频率

当然,一个测试芯片的良量可能意味着任何事情。一个成功的芯片可能只是“启动”,而缺陷率并没有考虑到这个工艺下的功耗和频率。作为公布的一部分,台积电还提供了测试芯片的电压-频率对应关系图。

对于CPU,在0.7 V下通过测试的频率为1.5 GHz,在1.2 V下可以达到3.25 GHz;对于GPU,在0.65 V下通过测试的频率为0.66 GHz,在1.2 V下可以达到1.43 GHz。

有人可能会说这些并不是特别有用:CPU和GPU的设计是非常不同的,一个深度集成的GPU可能因为设计不同在相同的电压下只能运行于更低的频率。不幸的是,台积电没有透露他们使用什么作为CPU/GPU的测试用例,这通常取决于工艺节点的领头合作伙伴是谁。

IO范例:PAM4

未来芯片的关键能力之一是支持多种通信技术,在测试芯片中,台积电还包括一个收发器,用于支持高速的PAM-4。

我们已经在其他工艺中看到了112 Gb/s的收发器,在这里台积电能够以0.76 pJ/bit的能效实现112 Gb/s。进一步推动带宽,台积电能够在眼图的容许公差内得到130 Gb/s,但此时能效为0.96 pJ/bit。这对于任何基于PAM-4的技术(如PCIe 6.0)来说都是一个好兆头。

使用EUV:减少掩模数量

TSMC的大量工艺都基于193nm的ArF浸没式光刻技术,在越来越复杂的工艺上掩模数量一直在膨胀:28 nm制程有30-40道掩膜,14nm/10nm制程有70多道掩膜,有报道称一些前沿工艺技术已经超过100道掩膜。在这次发布中,台积电表示将在超过10层的设计中广泛使用EUV,这将首次减少新工艺节点的掩模数量。

EUV的优点是能够用一个EUV步骤替换四到五个标准的非EUV掩膜步骤。而另一方面,单个EUV机器(每道掩膜每小时175片晶圆)的吞吐率比非EUV机器(每道掩膜每小时300片晶圆)低得多,但是EUV的速度应该乘以4-5才能得到相比较的吞吐率。有人说,台积电广泛使用EUV将大幅减少掩模数量,可是最终,掩模数量只是一个小小的下降。

如果我们假设16FFC工艺大约有60道掩膜,那么10FF工艺大约为80-85道掩膜,7FF则是90-95道掩膜。有了5FF和EUV,这个数字又回到了75-80,而没有EUV,这个数字可能是110+。最近的报道称,ASML在2019年的订单发货上落后了,并计划在2020年再生产25-27台,而需求量至少为50台。

5nm下的晶体管类型

IEDM的论文中描述了七种可供客户使用的晶体管,包括高端的eVT和低端的SVT-LL,这里有一系列的选项,可以根据漏电和所需的性能来使用。

三种主要类型是uLVT、LVT和SVT,它们都是低漏电(LL)的衍生体;eLVT位于曲线顶部,从uLVT到eLVT的跳跃幅度还是比较大的。

设计-技术协同优化(DTCO)的效果

在今年的IEDM上,DTCO的使用非常明显。简而言之,DTCO本质上是芯片设计基础上工艺优化的一个分支。我们很容易设计整体芯片,然后把它实现在硅片上,但为了获得最佳PPA(性能/功耗/面积),需要优化考虑使用的工艺节点。这种协同优化的效果可能是非常显著的:另一个工艺节点对应PPA的提升不可小觑,同时还意味着需要时间去实现。

DTCO的一个缺点是,当应用给定的工艺或设计时,它意味着未来任何工艺节点的第一代在技术上都比上一代的整体最佳版本差,或者充其量是等价的,但是要昂贵得多。因此,为了更好地改进以前的工艺技术,至少需要对新节点应用新一代DTCO,这样会延长新节点的推出时间。

英特尔、台积电,还有在某种程度上三星,都对特定产品的每个新工艺(以及每个工艺变体)应用某种形式的DTCO。至少对台积电而言,某些公司可能受益于某些DTCO改进的专有权,以帮助这些公司获得额外的性能增益。这意味着如果一个新的工艺节点没有附带DTCO,就不值得发布,因为没有人会想要它。

值得庆幸的是,TSMC在IEDM的5nm论文中直接提到了DTCO的主题。5nm测试芯片采用了DTCO,而不是强制采用设计规则,设计规则的可伸缩性使得芯片面积减少了40%。因此总面积为17.92 mm2的测试芯片,本来面积应该为25.1 mm2,良率为73%,而不是80%。这听起来效果并不显著,但与此同时,DTCO的应用使得密度增加1.84倍,速度提升超过15%,同时功耗减少30%。


原文链接:https://www.anandtech.com/show/15219/early-tsmc-5nm-test-chip-yields-80-hvm-coming-in-h1-2020


高端微信群介绍

创业投资群

AI、IOT、芯片创始人、投资人、分析师、券商

闪存群覆盖5000多位全球华人闪存、存储芯片精英

存储群

全闪存、软件定义存储SDS、超融合等企业级存储

AI芯片群

讨论AI芯片和GPU、FPGA、CPU异构计算

5G群

联网、5G技术与产业讨论

第三代半导体群

氮化镓、碳化硅等化合物半导体讨论

存储芯片群

DRAM、NAND、3D XPoint等各类存储介质和主控讨论

汽车电子群

MCU、电源、传感器等汽车电子讨论

光电器件群

光通信、激光器、ToF、AR、VCSEL等光电器件讨论

渠道群

存储和芯片产品报价、行情、渠道、供应链

想加入这些群,长按或扫描下面二维码加nanoarchplus为微信好友,介绍你的姓名-单位-职务注明群名,拉你进群。





SSDFans AI+IOT+闪存,万物存储、万物智能、万物互联的闪存2.0时代即将到来,你,准备好了吗?
评论 (0)
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 316浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 303浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 557浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 247浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 297浏览
  • 在全球制造业加速向数字化、智能化转型的浪潮中,健达智能作为固态照明市场的引领者和智能电子以及声学产品的创新先锋,健达智能敏锐捕捉到行业发展的新机遇与新挑战,传统制造模式已难以满足客户对品质追溯、定制化生产和全球化布局的需求。在此背景下, 健达智能科技股份有限公司(以下简称:健达智能)与盘古信息达成合作,正式启动IMS数字化智能制造工厂项目,标志着健达智能数字化转型升级迈入新阶段。此次项目旨在通过部署盘古信息IMS系统,助力健达实现生产全流程的智能化管控,打造照明行业数字化标杆。行业趋势与企业挑战
    盘古信息IMS 2025-04-30 10:13 53浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 108浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 341浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 456浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 213浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 109浏览
  • 想不到短短几年时间,华为就从“技术封锁”的持久战中突围,成功将“被卡脖子”困境扭转为科技主权的主动争夺战。众所周知,前几年技术霸权国家突然对华为发难,导致芯片供应链被强行掐断,海外市场阵地接连失守,恶意舆论如汹涌潮水,让其瞬间陷入了前所未有的困境。而最近财报显示,华为已经渡过危险期,甚至开始反击。2024年财报数据显示,华为实现全球销售收入8621亿元人民币,净利润626亿元人民币;经营活动现金流为884.17亿元,同比增长26.7%。对比来看,2024年营收同比增长22.42%,2023年为7
    用户1742991715177 2025-05-02 18:40 95浏览
  •  一、‌核心降温原理‌1、‌液氮媒介作用‌液氮恒温器以液氮(沸点约77K/-196℃)为降温媒介,通过液氮蒸发吸收热量的特性实现快速降温。液氮在内部腔体蒸发时形成气-液界面,利用毛细管路将冷媒导入蒸发器,强化热交换效率。2、‌稳态气泡控温‌采用‌稳态气泡原理‌:调节锥形气塞与冷指间隙,控制气-液界面成核沸腾条件,使漏热稳定在设定值。通过控温仪调整加热功率,补偿漏热并维持温度平衡,实现80K-600K范围的快速变温。二、‌温度控制机制‌1、‌动态平衡调节‌控温仪内置模糊控制系统,通过温度
    锦正茂科技 2025-04-30 11:31 49浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 341浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 345浏览
我要评论
0
3
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦