压力传感“生龙活虎”,智能触觉“整装待发”

原创 MEMS 2022-03-03 00:00

第41期“见微知著”培训课程:压力传感器核心技术


主办单位:麦姆斯咨询


协办单位:上海传感信息科技有限公司


一、课程简介


压力传感器是一种把压力信号转换为电信号的换能器。根据压力类型,压力传感器可分为表压、差压和绝压三大类;根据核心材料,压力传感器可分为硅、陶瓷、金属、石墨烯、高分子聚合物等类型;根据工作原理,压力传感器可分为压阻式、电容式、压电式、离电式和谐振式等类型。目前,市场上主流的压力传感器主要采用压阻式和电容式两类工作原理。压力传感器是微系统世界里第一个出现的商用MEMS器件,被广泛地应用于消费电子、汽车电子、工业控制、生物医疗、航天航空和国防领域。



压力传感器典型应用


基于MEMS技术的硅基压力传感器是低压(小于10 bar)应用的首选,具有低成本、小尺寸、易量产等特点。而在中高压应用,硅衬底则面临着陶瓷和金属两大衬底的竞争。以器件级为统计口径,2020年全球MEMS压力传感器市场规模约110亿元人民币,预计2026年将增长到145亿元人民币。其中,汽车电子和消费电子两类应用的市场规模排名前两位,分别占据40%和23%的市场份额,并且消费电子市场比较活跃,智能手机、无人机和可穿戴设备通常集成气压传感器用于高度定位,近期还涌现出以TWS耳机(压感操控)、电子烟(吸力检测及流量测量)为代表的新兴应用领域。

MEMS压力传感器产业链


近些年,MEMS压力传感器产业格局出现变化,以泰科电子(TE Connectivity)和安费诺(Amphenol)为代表的连接器大公司实施了一系列收购,不断地加强他们的压力传感器产品组合。因此,这两家公司都进入2021年全球MEMS压力传感器厂商Top 10。其他的领先公司还包括博世(Bosch)、英飞凌(Infineon)、森萨塔(Sensata)、恩智浦(NXP)、霍尼韦尔(Honeywell)、意法半导体(STMicroelectronics)等。博世一直以来都是MEMS压力传感器领域的全球领导者,其在汽车电子和消费电子两大市场中均拥有强大的影响力。


随着材料科学、柔性电子和微纳技术的发展,各种柔性压力传感器应运而生,它们通常由两层柔性电极和中间的功能软材料构成,具有可弯曲、可变形的特点。新材料的使用为压力传感器的未来描绘了一幅更广阔的蓝图,有望激发电子皮肤、智能触觉、健康监测、生物医疗、人机交互、人工智能等领域中的巨大应用潜力,例如中国科研团队开发出一款基于中医脉象理论和柔性压力传感器阵列的可穿戴式多通道脉搏监测系统,将为中医的现代化和智慧医疗的发展发挥重要的价值(DOI: 10.1038/s41378-022-00349-3)。


柔性压力传感器技术及应用(DOI: 10.1002/nano.202100003)


鉴于传感器从业人员的广泛需求,麦姆斯咨询邀请拥有丰富实践经验的科研学者及企业家,为大家传授压力传感器知识及技术经验。本次课程内容包括:(1)压阻式压力传感器;(2)电容式压力传感器;(3)离电式压力传感器;(4)谐振式压力传感器;(5)MEMS SOI压力传感器;(6)智能触觉传感技术;(7)压力传感器封装;(8)压力传感器测试;(9)压力传感器仿真实战。


二、培训对象


本课程主要面向压力传感器产业链上下游企业的技术人员和管理人员,以及高校师生,同时也欢迎其他希望了解压力传感器的非技术背景人员参加,如销售和市场人员、投融资机构人员、政府管理人员等。


三、培训时间


2022年4月22日~4月24日


授课结束后,为学员颁发麦姆斯咨询的结业证书。


四、培训地点


无锡市(具体地点以培训前一周的邮件通知为准)


五、课程内容


课程一:压阻式压力传感器


老师:中国科学院上海微系统与信息技术研究所 研究员 李昕欣

低成本、高性能的小型化压力传感器一直是消费电子市场不断追求的目标。研发高良率的单片集成工艺来制造更小且更高性能的MEMS芯片是其中一种解决方案。中科院上海微系统所李昕欣老师课题组利用独创的无疤痕微创手术(MIS)制造出超小型压阻式MEMS压力传感器,并且MIS工艺与标准IC代工厂的工艺兼容,因此可有效降低成本。本课程全面介绍压阻式MEMS压力传感器,从工作原理到设计与制造,最后阐述技术发展及应用前景。


课程提纲:
(1)压阻式压力传感器工作原理及特点;
(2)压阻式压力传感器设计与仿真;
(3)压阻式压力传感器制造:微创手术(MIS)工艺;
(4)基于微创手术工艺的超小型MEMS压力传感器;
(5)压阻式MEMS压力传感器技术展望;
(6)压阻式压力传感器典型应用及市场。


课程二:电容式压力传感器


老师:沈阳仪表科学研究院有限公司 副总工程师 刘沁

电容式压力传感器与压阻式压力传感器相比,具有灵敏度高、温度漂移小、低功耗等优点,尤其适合用于小量程压力测量。为了满足小量程压力测量对灵敏度和线性度的要求,相关研究工作主要集中在三个方面:MEMS设计的创新、制造工艺的改良、测量电路的优化。此外,发掘杨氏模量低和介电常数大的新材料也是一个可行的研究方向。本课程全面介绍电容式MEMS压力传感器,从工作原理到设计与制造,最后介绍典型应用及技术展望。


课程提纲:
(1)电容式压力传感器工作原理及特点;
(2)电容式压力传感器设计与制造;
(3)电容式压力传感器性能及可靠性测试;
(4)电容式压力传感器典型应用;
(5)电容式压力传感器技术展望。

课程三:离电式压力传感器


老师:中国科学技术大学苏州高等研究院 长江学者、讲席教授 潘挺睿

柔性离电子传感(Flexible IonTronic Sensing,FITS)机制被国际主流学术界列为新一代(第四代)柔性力和触觉传感机制,它通过利用电极和离子表面之间的压力来感应电容变化。基于独特FITS机制的离电式压力传感器具有极高的灵敏度、分辨率和信噪比,可实现各类基材的触觉智能升级。本课程为大家揭秘这项全球首创的“黑科技”如何超越人类触觉,并服务于可穿戴设备、健康监测、机器人等应用。


课程提纲:
(1)离电式压力传感器工作原理及特点;
(2)离电式压力传感器设计与制造;
(3)离电式压力传感器性能及可靠性测试;
(4)基于离电式压力传感器的触觉智能应用;
(5)人工触觉技术展望。

课程四:谐振式压力传感器


老师:中国科学院空天信息创新研究院 研究员 王军波

中科院电子所(现为中科院空天院)自1997年开始率先在国内开展谐振式MEMS压力传感器研究,先后研制出“电热激励/压阻检测”、“电磁激励/磁感应检测”、“静电激励/电容检测”三种谐振式压力传感器,突破了传感器结构设计、MEMS加工工艺、晶圆级真空封装、低应力组装、闭环谐振电路、检测仪表等关键技术,并在实验室条件下实现了小批量试生产。本课程全面介绍谐振式MEMS压力传感器,从工作原理到设计与制造、封装与测试,最后阐述技术发展趋势。


课程提纲:
(1)谐振式压力传感器工作原理及特点;
(2)谐振式压力传感器设计与制造;
(3)谐振式压力传感器封装;
(4)谐振式压力传感器性能及可靠性测试;
(5)谐振式压力传感器技术展望。

课程五:MEMS SOI压力传感器


老师:东南大学 教授 黄晓东

普通的硅基压力传感器(例如扩散硅压力传感器)在工作温度超过120℃时会失效,从而导致压力测量失败。为了解决高温环境下的压力测量问题,以绝缘体上硅(SOI)、碳化硅、蓝宝石为代表的材料获得应用。其中,MEMS SOI压力传感器具有耐高温(理论工作温度可达450℃)、抗辐射、稳定性好等优点。本课程全面介绍MEMS SOI压力传感器,从工作原理到设计与制造、封装与测试,最后介绍典型应用及技术发展。


课程提纲:
(1)MEMS SOI压力传感器工作原理及特点;
(2)MEMS SOI压力传感器设计与制造;
(3)MEMS SOI压力传感器封装及测试;
(4)MEMS SOI压力传感器典型应用;
(5)MEMS SOI压力传感器技术展望。

课程六:智能触觉传感技术


老师:华东师范大学 教授 吴幸

智能触觉传感系统不仅具备柔性压力传感器采集信号的功能,还将传感器与相应的集成电路相连,并对采集到的数据信息进行处理与分析,例如使用人工智能(AI)神经网络算法进行计算,最终展示出人体生理健康信息监测所需要的信息与智能化分析结果。本课程介绍近年来柔性压阻式压力传感器的智能化进展,结合原位表征技术阐明柔性压力传感器的微观结构与性能的关联机制,探讨基于柔性压力传感器的智能系统构筑,最后阐述智能触觉传感技术发展。


课程提纲:
(1)触觉传感技术概述;
(2)原位表征技术与柔性压力传感器微观结构模型;
(3)用于学习人手跟踪和抓取的双模式传感器和执行器;
(4)基于柔性压力传感器构筑的智能触觉系统;
(5)智能触觉传感系统应用:人体生理信号采集、传输、分析及融合;
(6)智能触觉传感技术展望。

课程七:压力传感器封装


老师:山东盛品电子技术有限公司 电子研发总监 崔广军

MEMS传感器封装复杂多样,除了包括IC封装的功能部分,即电源分配、信号分配和散热等,还需要考虑应力、气密性、隔离度、特殊的封装环境和引出等问题。MEMS产品质量是终端设备正常工作的重要前提,我们不仅要避免MEMS结构的失效,还需要保障MEMS封装的可靠性。本课程从MEMS传感器封装概述开始,逐一介绍压力传感器封装设计、工艺和设备,以及封装可靠性,最后对封装技术发展趋势进行展望。


课程提纲:
(1)MEMS传感器封装技术概述;
(2)MEMS压力传感器封装设计与仿真;
(3)MEMS压力传感器封装工艺开发;
(4)MEMS压力传感器封装设备介绍;
(5)MEMS压力传感器封装可靠性;
(6)MEMS压力传感器封装技术展望。

课程八:压力传感器测试


老师:苏州敏芯微电子技术股份有限公司 技术总监 肖滨

压力传感器测试包括静态性能测试和动态性能测试两大类。静态性能包括零点输出、满量程输出、非线性、迟滞、重复性、准确度、灵敏度等。动态性能包括频率响应、谐振频率、自振频率、阻尼比、上升时间、时间常数、过冲量等,此外还需要测试压力传感器的温度输出特性,例如零点温漂、灵敏度温漂。本课程详细介绍压力传感器测试方法及系统,并阐述车规级传感器标准与认证。


课程提纲:
(1)压力传感器测试方法概述;
(2)压力传感器可靠性测试及失效分析;
(3)车规级压力传感器标准与认证;
(4)压力传感器测试系统。

课程九:压力传感器仿真实战


老师:Comsol 应用工程师 钟振红


MEMS压力传感器设计涉及多个物理场,为了准确地评估传感器性能,需要利用可靠的仿真工具对不同的物理场进行耦合,并描述它们之间的相互作用。本课程讲解如何利用COMSOL Multiphysics及MEMS模块精确地仿真各种原理的压力传感器,以便在批量制造之前获得其性能,此外还会分析温度和湿度等环境因素对压力传感器的影响。


课程提纲:
(1)COMSOL Multiphysics和MEMS模块介绍;
(2)电容式压力传感器仿真设计;
(3)压阻式压力传感器仿真设计;
(4)其它类型压力传感器的分析方法;
(5)温度和湿度等环境因素对压力传感器的影响。

六、师资介绍


李昕欣,中国科学院上海微系统与信息技术研究所研究员、博士生导师。他分别于清华大学和复旦大学获学士和博士学位,获得荣誉包括:国家杰出青年科学基金、全国百篇优博论文导师、新世纪百千万人才工程国家级人选、国务院政府特殊津贴、中科院百人计划终评优秀、上海市青年科技英才、上海市领军人才、国家技术发明二等奖和上海市技术发明一等奖各一项。他是MEMS与微纳传感器领域国际知名学者和国内科技带头人之一,主持国家863项目、重点研发计划项目、重大科学仪器项目等,担任国家重大专项“中医药关键技术装备”的战略筹备和方案制定专家组副组长、中科院基础元器件专家组成员。他兼任4本国际SCI期刊编辑或编委、Transducers大会程序委员会执行委员;发表SCI论文约300篇,专利100余项;担任三个国家学会二级分会副理事长;研制出的MEMS传感器,满足了国家重要应用核心器件需求,并转化给高科技企业实现了产品化。


刘沁,沈阳仪表科学研究院有限公司副总工程师,传感器国家工程研究中心常务副主任、研究员。他一直从事硅基压力传感器基础工艺及装备技术研究,先后组织、负责并完成国家“七五”至“十三五”十余项传感器及MEMS传感器专用装备的科研攻关工作,主要包括科技部重大攻关“MEMS传感器专用设备研究”、“863硅基传感器”、国家科工局重点配套攻关“复合传感器”、辽宁省技术专项资金“高性能硅电容差压传感器”,工信部强基专项、工程院“面向2035推进强国建设战略”、工程院“新一代信息技术产业提升”等重大专项工作。他先后获机械部、中国机械工业集团、中国机械联合会、中国机械工程学会、辽宁省、沈阳市等(省部级)科技奖二十余项。他拥有发明与实用新型专利十余项,编制出版在执行的国家标准六项,团体标准、行业标准十余项。他还是中国机械工业集团高级专家、沈阳市领军人才、国家发改委“国家工程中心先进个人”、沈阳市创新楷模、中国仪器仪表学会仪表元件分会常务理事、中国仪器仪表学会仪表工艺分会理事、中国仪器仪表协会传感器行业协会理事等。


潘挺睿,中国科学技术大学苏州高等研究院长江学者、讲席教授,美国医学与生物工程院和英国皇家化学学会会士,钛深科技(深圳)有限公司创始人。他曾担任美国加州大学戴维斯分校生物医学工程系、电子与计算机工程系,以及机械与航空工程系的终身教授。他曾创建了加州大学微纳创新实验室(MiNI Lab)并担任首席科学家,并担任加州大学微纳米制造中心(Center for Nano and MicroManufacturing)主任,同期创立了加州大学“宏伟”国际研究交流(GREAT)计划并兼任主任教授。潘教授同时兼任两份顶级国际生物医学工程核心期刊IEEE Transactions on Biomedical EngineeringAnnals of Biomedical Engineering副主编。他同期被聘为北京大学和中国科学技术大学的客座教授及中国科学院深圳先进技术研究院的客座研究员。潘教授本科毕业于清华大学,毕业后留美深造,先后获明尼苏达大学生物医学工程系硕士、电子工程系博士和医学博士后。他的研究方向主要集中于研发新一代柔性触觉传感技术、数字微流控与芯片技术、穿戴式健康与个性化医疗技术,其跨领域的原创性科研成果包括:柔性离电传感技术(Flexible IonTronic Sensing/FITS)、微流控自适应打印技术(Microfluidic Adaptive Printing/MAP)、表面微纳流体技术(Interfacial Microfluidics)和生物纳米材料与加工(Bio-Nanomaterials and BioNanofabrication),受到国际媒体及学术界广泛的关注与报道。潘教授及其领导的团队在高水平期刊和会议杂志上发表论文超过100余篇(其中包括NatureScience子刊、Advanced MaterialsLab ChipBiomaterials等高影响力杂志),同时获得了20余项国际专利授权。鉴于潘教授在其领域取得的突出学术及创新贡献,他荣获了包括美国科学基金会(NSF)杰出青年奖(CAREER)和科技前沿创新奖(EFRI)、施乐(Xerox)基金会奖、加州大学杰出贡献奖和杰出青年教授奖等诸多重要奖项。


王军波,博士,中国科学院空天信息创新研究院研究员。2002年毕业于清华大学,同年到中国科学院电子学研究所传感技术国家重点实验室北方基地,历任助理研究员、副研究员、研究员、室副主任、党总支书记、室主任。2006年和2009年分别赴英国卢瑟福国家实验室、牛津大学工程系和美国加州大学伯克利(Berkeley)分校传感器与执行器中心(BSAC)从事合作研究。他的主要研究方向是传感器技术、MEMS技术与封装、微流控芯片、信号检测与仪表。2017年“高精度硅谐振压力传感器关键技术及应用”获得中国电子学会技术发明二等奖(第1完成人),2017年“高精度硅基MEMS谐振式压力传感器”入选第12届中国半导体创新产品与技术(第1完成人),2018年获得国家杰出青年科学基金资助。授权发明专利50余项,多项实现转移转化。


黄晓东,博士,东南大学特聘教授,MEMS教育部重点实验室副主任,江苏省中青年学术带头人,国家重点研发计划项目负责人。他的研究方向包括:微能源与微系统、MEMS与智能传感器,迄今共以第一/通讯作者发表论文30多篇,主持国家重点研发计划项目、国家自然科学基金、江苏省优秀青年基金、中国电科、华为等科研项目多项。他还担任IEEE EDSSC技术委员会共主席、全国敏感元件与传感器学术会议领导小组成员、中国仪器仪表学会传感器分会常务理事、IEEE高级会员、《传感技术学报》编委。


吴幸,博士、教授,现任职华东师范大学通讯与电子工程学院。她于2012年获得新加坡南洋理工大学博士学位,一直从事微电子方向研究工作,在国际顶级期刊ScienceNature子刊、IEEE TED等发表SCI论文100余篇。她先后主持参与国家和省部级课题10余项,获得授权专利40余项,入选国家级高层次人才计划、上海市高层级人才计划,并曾获台积电(TSMC)最佳研究奖。


崔广军,山东盛品电子技术有限公司电子研发总监,同时担任山东大学、山东师范大学研究生合作导师。他长期从事MEMS智能传感器系统级封装(SiP)技术研究,在封装结构设计和微芯片封装流体仿真方面积累了丰富的经验,曾参与山东省首条集成电路封装测试生产线、山东省集成电路封装测试服务平台、综合保税区集成电路先进封装测试生产线的筹备、建厂、工艺选型及产品量产化工作。他曾参与2016年、2019年、2020年山东省重大研发计划项目、山东半岛国家自主创新示范区发展建设项目及济南市科技发展计划项目,申请专利9项,并获得山东省科技进步三等奖、山东省电子学会科学技术奖二等奖。


肖滨,苏州敏芯微电子技术股份有限公司技术总监。他拥有西安交通大学电子科学与技术专业学士学位、挪威东南大学(University of South-Eastern Norway, USN)微系统技术硕士学位,曾就职于森萨塔科技(Sensata Technologies)有限公司。2010年至今,主要从事MEMS压力传感器芯片设计、产品开发等相关研发工作。


钟振红连续多年获得麦姆斯咨询“最受欢迎老师”,COMSOL应用工程师。他毕业于复旦大学力学系理论与应用力学专业,长期负责COMSOL在声学、压力、光学、射频等领域的技术支持和客户咨询,拥有十余年COMSOL仿真设计经验,研究内容主要涉及MEMS传感器、声学器件、光学器件、射频滤波器、压电换能器以及AC/DC等领域。

七、培训费用和报名方式咨询


请发送电子邮件至BISainan@MEMSConsulting.com,邮件题目格式为:报名+压力传感器培训+单位简称+人数。


报名网站:

https://www.memstraining.com/training_41.html


麦姆斯咨询
联系人:毕女士
电话:18921125675
E-mail:BISainan@MEMSConsulting.com

MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论 (0)
  • 软瓦格化 RISC-V 处理器集群可加速设计并降低风险作者:John Min John Min是Arteris的客户成功副总裁。他拥有丰富的架构专业知识,能够成功管理可定制和标准处理器在功耗、尺寸和性能方面的设计权衡。他的背景包括利用 ARC、MIPS、x86 和定制媒体处理器来设计 CPU SoC,尤其擅长基于微处理器的 SoC。RISC-V 指令集架构 (ISA) 以其强大的功能、灵活性、低采用成本和开源基础而闻名,正在经历各个细分市场的快速增长。这种多功能 ISA 支持汽车、航空航天、国防
    ArterisIP 2025-04-14 10:52 68浏览
  • 你知道精益管理中的“看板”真正的意思吗?在很多人眼中,它不过是车间墙上的一块卡片、一张单子,甚至只是个用来控制物料的工具。但如果你读过大野耐一的《丰田生产方式》,你就会发现,看板的意义远不止于此。它其实是丰田精益思想的核心之一,是让工厂动起来的“神经系统”。这篇文章,我们就带你一起从这本书出发,重新认识“看板”的深层含义。一、使“看板”和台车结合使用  所谓“看板”就是指纸卡片。“看板”的重要作用之一,就是连接生产现场上道工序和下道工序的信息工具。  “看板”是“准时化”生产的重要手段,它总是要
    优思学院 2025-04-14 15:02 83浏览
  • 在公共安全、工业调度、户外作业等场景中,对讲机作为关键通信工具,正面临从“功能单一化”向“智能融合化”的转型需求。WT2605C蓝牙语音芯片凭借双模蓝牙架构、高扩展存储方案与全场景音频处理能力,推动传统对讲机实现无屏化操控、专业级音频解码与蓝牙音箱功能融合,为行业用户打造更高效、更灵活、更低成本的通信解决方案。一、无屏化交互革命:BLE指令重构操作逻辑针对工业环境中对讲机操作复杂、屏幕易损的痛点,WT2605C通过双模蓝牙(BR/EDR+BLE)与AT指令集,实现全链路无屏控制:手机APP远程控
    广州唯创电子 2025-04-14 09:08 33浏览
  •  亥姆霍兹线圈的制造材料选择需兼顾导电性、绝缘性、机械强度及磁场性能,具体分类如下:一、‌导线材料1、‌高纯度铜线:‌作为线圈绕制的核心材料,铜因其you异的导电性(电阻率低)和热稳定性成为shou选。漆包铜线通过表面绝缘漆层实现匝间绝缘,避免短路‌。2、‌其他导电材料‌ 铝线等材料可用于特定场景(如轻量化需求),但导电性和抗氧化性较铜略逊二、‌磁源材料‌1、‌永磁体‌如钕铁硼(NdFeB)或铁氧体,适用于无需外部电源的静态磁场生成,但磁场强度有限。2、‌电磁铁‌通过电流控制磁场强度,
    锦正茂科技 2025-04-14 10:22 32浏览
  • 亥姆霍兹线圈的应用领域‌物理学研究‌:在原子物理中,用于研究塞曼效应;在磁学研究中,用于测试磁性材料的磁滞回线等特性;还可用于研究电子荷质比等实验‌。‌工程与技术领域‌:用于电子设备校准和测试,提供标准磁场环境;在大型加速器中用于磁场校准;用于电磁干扰模拟实验,测试电子设备在不同磁场干扰下的性能‌。‌生物医学领域‌:研究生物磁场效应,如探索磁场对生物细胞的影响;在生物医学工程基础研究中,提供可控磁场环境‌。‌其他应用‌:作为磁场发生装置产生标准磁场;用于地球磁场的抵消与补偿、地磁环境模拟;还可用
    锦正茂科技 2025-04-14 10:41 51浏览
  •   电磁干扰测试系统软件:深度剖析   电磁干扰(EMI)测试系统软件,是电子设备电磁兼容性(EMC)测试的核心工具,在通信、汽车、航空航天、医疗设备等众多领域广泛应用。它的核心功能涵盖信号采集、频谱分析、干扰定位、合规性评估以及报告生成,旨在保障设备在复杂电磁环境中稳定运行。下面从功能、技术原理、应用场景、主流软件及发展趋势这五个方面展开详细解析。   应用案例  软件开发可以来这里,这个首肌开始是幺乌扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照你的顺序组合可以找到。   目前
    华盛恒辉l58ll334744 2025-04-14 10:02 27浏览
  •   高空 SAR 目标智能成像系统软件:多领域应用的前沿利器   高空 SAR(合成孔径雷达)目标智能成像系统软件,专门针对卫星、无人机等高空平台搭载的 SAR传感器数据,融合人工智能与图像处理技术,打造出的高效目标检测、识别及成像系统。此软件借助智能算法,显著提升 SAR图像分辨率、目标特征提取能力以及实时处理效率,为军事侦察、灾害监测、资源勘探等领域,提供关键技术支撑。   应用案例系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合
    华盛恒辉l58ll334744 2025-04-14 16:09 98浏览
  • 一、磁场发生设备‌电磁铁‌:由铁芯和线圈组成,通过调节电流大小可产生3T以下的磁场,广泛应用于工业及实验室场景(如电磁起重机)。‌亥姆霍兹线圈‌:由一对平行共轴线圈组成,可在线圈间产生均匀磁场(几高斯至几百高斯),适用于物理实验中的磁场效应研究。‌螺线管‌:通过螺旋线圈产生长圆柱形均匀磁场,电流与磁场呈线性关系,常用于磁性材料研究及电子束聚焦。‌超导磁体‌:采用超导材料线圈,在低温下可产生3-20T的强磁场,用于核磁共振研究等高精度科研领域。‌多极电磁铁‌:支持四极、六极、八极等多极磁场,适用于
    锦正茂科技 2025-04-14 13:29 53浏览
  • 在制造业或任何高度依赖产品质量的行业里,QA(质量保证)经理和QC(质量控制)经理,几乎是最容易被外界混淆的一对角色。两者的分工虽清晰,但职责和目标往往高度交叉。因此,当我们谈到“谁更有可能升任质量总监”时,这并不是一个简单的职位比较问题,而更像是对两种思维方式、职业路径和管理视角的深度考察。QC经理,问题终结者QC经理的世界,是充满数据、样本和判定标准的世界。他们是产品出厂前的最后一道防线,手里握着的是批次报告、不合格品记录、纠正措施流程……QC经理更像是一位“问题终结者”,目标是把不合格扼杀
    优思学院 2025-04-14 12:09 56浏览
  •     电气间隙是指两个带电体在空气中的最短距离。导体、电介质(空气),最短距离,就是这个术语的要素了。        (图源:TI)    电气间隙是由安装类别决定的,或者更本质地说,是瞬态过电压的最大值来决定的,而不是工作电压的高低。安装类别见协议标准第007篇,瞬态过电压另见协议标准第009篇。    实际设计中怎么确定电气间隙?可以按照CAT,工作电压和绝缘等级来定。 
    电子知识打边炉 2025-04-13 18:01 78浏览
  • 在当今汽车电子化和智能化快速发展的时代,车规级电子元器件的质量直接关系到汽车安全性能。三星作为全球领先的电子元器件制造商,其车规电容备受青睐。然而,选择一个靠谱的三星车规电容代理商至关重要。本文以行业领军企业北京贞光科技有限公司为例,深入剖析如何选择优质代理商。选择靠谱代理商的关键标准1. 授权资质与行业地位选择三星车规电容代理商首先要验证其授权资质及行业地位。北京贞光科技作为中国电子元器件行业的领军者,长期走在行业前沿,拥有完备的授权资质。公司专注于市场分销和整体布局,在电子元器件领域建立了卓
    贞光科技 2025-04-14 16:18 95浏览
  • 时源芯微 专业EMC解决方案提供商  为EMC创造可能(适用于高频时钟电路,提升EMC性能与信号稳定性)一、设计目标抑制电源噪声:阻断高频干扰(如DC-DC开关噪声)传入晶振电源。降低时钟抖动:确保晶振输出信号纯净,减少相位噪声。通过EMC测试:减少晶振谐波辐射(如30MHz~1GHz频段)。二、滤波电路架构典型拓扑:电源输入 → 磁珠(FB) → 大电容(C1) + 高频电容(C2) → 晶振VDD1. 磁珠(Ferrite Bead)选型阻抗特性:在目标频段(如100MHz~1GH
    时源芯微 2025-04-14 14:53 58浏览
  •   电磁干扰测试系统:电子设备电磁兼容性保障利器   北京华盛恒辉电磁干扰测试系统作为评估电子设备在电磁环境中电磁兼容性(EMC)的关键工具,主要用于检测与分析设备在电磁干扰环境下的性能表现,确保其符合相关标准,能够在实际应用中稳定运行。   应用案例   目前,已有多个电磁干扰测试系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁干扰测试系统。这些成功案例为电磁干扰测试系统的推广和应用提供了有力支持。   系统组成   电磁干扰测试系统一般由以下核心部分构成:  
    华盛恒辉l58ll334744 2025-04-14 10:40 39浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦