全面分析显示驱动芯片vs.晶圆代工厂制程节点和应用(专业收藏版)

芯存社 2022-03-02 18:47

要点

  • 大尺寸LCD驱动IC大多是在8英寸晶圆厂使用110纳米至300纳米制程生产的。然而,在8英寸晶圆厂中,还有电源管理IC(PMICs)、CMOS图像传感器(CIS)、可信平台模块(TPMs)和微控制器(MCUs)共享产能。

  • 智能手机LCD和OLED驱动IC大多是在12英寸晶圆厂使用28纳米至90纳米制程生产的。然而,12英寸晶圆厂中,还有PMICs、CIS、TPMs、MCUs、底板管理控制器(BMCs)和时序控制器(T-cons)共享产能。


显示驱动芯片(DDIC)是显示面板制造中的一个关键部件。通常,无晶圆厂IC设计公司(如联咏科技、奇景光电和LX Semicon)设计DDIC,在半导体晶圆代工厂中采用不同的制程节点(以微米[µm]或纳米[nm]为单位)制造IC芯片。晶圆代工厂作为原始设备制造商(OEM)与IC公司合作,或为分包商制造关系。之后,IC封装和测试公司完成DDIC的后道工序。然后,DDIC被交付给显示面板厂商,将IC粘合在面板上,实现显示信号驱动功能。


DDIC通常以带载封装(TCP)形式包装和运输。图1显示了LCD面板和DDIC之间的关系。


图1:LCD面板和DDIC

Source: ChipMos


显示面板的分辨率通常以像素和子像素的形式出现。例如,FHD面板意味着分辨率为1920x1080,而4K或超高清(UHD)面板意味着分辨率为3840x2160。3840表示X轴,而2160表示Y轴。3840x2160分辨率表示面板有3840x2160(8,294,400)个像素。每个像素有三个子像素(红、绿、蓝)。因此,面板总共有3840xRGBx2160(2490万)个子像素。


像素和子像素构成了分辨率。DDIC的功能是驱动这些子像素的显示信号。因此,分辨率和每颗DDIC的信道数(pin)决定了每片面板中DDIC的数量,而不一定由面板尺寸决定。


当涉及到DDIC规格时,面板的分辨率是最关键的因素。


在制造DDIC时,晶圆代工厂的制程节点是最关键的因素。


DDIC通过不同的粘合技术被粘合在面板边缘,如COG (chip-on-glass) 和COF (chip-on-film)。柔性OLED面板也采用COP (chip-on-plastic) 方式,如图2所示。


图2:DDIC的COG、COF和COP粘合

Source: Omdia


由于分辨率是以X轴和Y轴形式出现的,所以有几种驱动IC:


  • 源极驱动芯片(Source driver IC):它驱动X轴上的信号,也被称为source端或column端。


  • 栅极驱动芯片(Gate driver IC):它驱动Y轴上的信号,也被称为gate端或row端。在现代,许多面板设计是无栅极或GOA (gate-on-array),以节省面板边缘空间,使边框更薄。GOA将栅极驱动电路集成到TFT阵列中,这样就可以省掉栅极驱动IC部分。


  • 智能手机DDIC(Smartphone DDIC):它将源极和栅极集成到单一驱动芯片中。


  • 触控和显示驱动集成(TDDI):这将触控芯片与显示芯片整合进单一芯片中。


图3显示了DDIC的供应链:


图3:中国台湾的DDIC行业

Source: ChipMos


正如前面所述,DDIC是在半导体晶圆厂里制造的。下图展示了晶圆的外观和上面的IC芯片。


图4:半导体硅晶圆与IC芯片的对比

Source: ChipMos and DISCO


半导体晶圆有两个重要的特征:


  • 晶圆尺寸:半导体晶圆有几种尺寸:6英寸(直径150毫米)、8英寸(直径200毫米)和12英寸(直径300毫米)。主流的尺寸是8英寸和12英寸。


  • 制程节点:这指的是电路铸造的制程工艺节点。制程节点越小,在一块晶圆上可以制造的集成电路就越多。此外,在裸芯片(IC die chip)上可以设计出更微妙和复杂的电路。制程节点是以纳米来衡量的。一纳米等于一米的十亿分之一(0.000000001米)。在科学符号中,一纳米可以表示为1x10-9米或1/1,000,000,000米。


晶圆尺寸和制程节点是相关的。12英寸晶圆代工厂比8英寸晶圆代工厂新;因此,12英寸晶圆采用的制程节点比8英寸晶圆的制程节点更先进。


8英寸晶圆厂通常使用100纳米到500纳米的制程制造芯片。


对于12英寸晶圆来说,它们通常采用150纳米和更小的制程节点,大多在14纳米到90纳米之间。


目前,世界上最先进的晶圆制程节点是中国台湾台积电的3纳米和5纳米,如图5所示。


图5:台积电的3纳米和5纳米晶圆制程节点

Source: TSMC


然而,DDIC不需要用如此精细的制程工艺来生产。DDIC需要的制程节点为28纳米到300纳米。


一般来说,DDIC和制程节点之间的关系可以归纳为以下几点:       


  • 高清分辨率的大尺寸TFT LCD驱动IC:200纳米至300纳米

  • FHD大尺寸TFT LCD驱动IC:110纳米至160纳米

  • 4K (UHD) TFT LCD驱动IC:55纳米至90纳米

  • 智能手机和平板电脑TDDI驱动IC:55纳米至90纳米

  • 标准分辨率(HD)TDDI驱动IC:55纳米至110纳米

  • 高分辨率(FHD及以上)TDDI驱动IC:40纳米至55纳米

  • 高分辨率OLED驱动IC:28纳米至40纳米


没有专门生产DDIC的半导体晶圆厂,这表示晶圆代工厂生产各种不同的逻辑IC和应用IC ─ DDIC只是其中之一。这种产能共享在半导体行业内造成了供需波动。


在半导体行业中,有许多不同的逻辑和应用IC共用晶圆代工厂产能。它们与DDIC的关系如图6所示。


图6:制程节点、应用和DDIC的对比

Source: Omdia


  • Type-B USB接口IC在8英寸晶圆厂中使用250–500纳米制程生产。


  • PMIC在8英寸晶圆厂中采用110–180纳米制程生产。目前,为了利用12英寸晶圆厂增加的产能,正在开发在12英寸晶圆上使用80-90纳米制程制造PMIC。


  • 宽屏扩展图形阵列(WXGA)和FHD分辨率的车载显示源极驱动芯片是在8英寸和12英寸晶圆厂中采用110–160纳米制程生产的。


  • 由于产能共享,PMIC的紧缺正在影响车载显示源极驱动芯片。


  • 对于液晶电视面板,高清分辨率的源极和栅极驱动IC是在8英寸晶圆厂使用200–300纳米制程生产的。FHD和UHD源极驱动IC是在8英寸晶圆厂使用110–160纳米制程生产的。


  • 对于液晶桌上型显示器面板,HD和FHD源极和栅极驱动IC是在8英寸晶圆厂中用190-300纳米制程制造的。FHD、UHD和高分辨率游戏显示驱动IC是在8英寸晶圆厂中用110-160纳米制程制造的。


  • 对于笔记本电脑面板,HD驱动IC是在8英寸晶圆上采用200-300纳米制程制造的,而FHD和UHD驱动IC是在8英寸晶圆上采用110-160纳米制程制造。一些高分辨率的UHD源极驱动IC是在12英寸晶圆上采用70-80纳米制程制造的。


  • T-con芯片是在8英寸和12英寸晶圆上分别采用100-110纳米或40–55纳米制程制造的,范围很广。有些甚至是用28纳米以下的制程制造的。


  • FoD (Fingerprint-on-display ) IC是在8英寸晶圆上采用180纳米制程制造的。


  • 所有平板电脑和智能手机的LCD和OLED DDIC都是在12英寸晶圆上制造的。TDDI芯片是主流,它将触控芯片与显示芯片整合在单一芯片中。


  • 平板显示TDDI驱动IC是在12英寸晶圆上使用55-90纳米制程制造的。


  • 智能手机高清分辨率TDDI驱动芯片是在12英寸晶圆厂采用55-110纳米制程制造的。


  • 智能手机FHD TDDI驱动芯片是在12英寸晶圆上采用40–55纳米制程制造的。


  • CIS在12英寸晶圆代工厂产能中占据重要地位。低端CIS与大尺寸TFT LCD显示驱动IC共享产能,而中端CIS与智能手机高清TDDI共享产能。高端CIS与智能手机FHD TDDI共享产能。


  • AMOLED DDIC是在12英寸晶圆上使用28–40纳米制程制造的。


半导体晶圆厂通常与无晶圆厂IC设计公司签订长期合同,包括DDIC制造,以分配晶圆产能。


然而,IC的价格始终是第一考虑因素。晶圆代工厂商,如台积电(TSMC)、联电(UMC)、Global Foundries、力积电(PSMC)、世界先进(VIS)、晶合集成(Nexchip)、中芯国际(SMIC)、华邦电子(Winbond)等,都在经营分包制造业务。因此,实现收益和利润最大化是他们的首要任务。


IC芯片的价格水平是决定产能分配的一个因素。

下图显示了8英寸和12英寸晶圆厂的产能分配优先级与IC价格水平。


图7:8英寸晶圆应用和IC价格水平

Source: Omdia


对于8英寸晶圆,IC价格从低到高排序如下:


  • 金属氧化物半导体场效应管(MOSFETs):110-300纳米

  • LED驱动IC:300–500纳米

  • NOR闪存IC:100-180纳米

  • 音频IC:110-300纳米

  • DDIC:110-300纳米,特别是用于9英寸及以上的大尺寸TFT LCD面板

  • T-cons: 110-180纳米

  • CIS: 110–280纳米

  • TPM ICs: 110–280纳米

  • PMICs: 110–280纳米

  • Retimer/redriver IC(用于PC内部传输):110-180纳米

  • USB控制器:110-180纳米

  • MCU,特别是用于汽车应用:150-300纳米


如上所示,MCU是8英寸晶圆上价格最高的芯片,而DDIC的价格水平居中。


当MCU需求激增时,8英寸晶圆往往会生产更多的MCU,而不是价格较低的MOSFET。另一方面,PMIC和DDIC的需求稳定,因此晶圆代工厂商总是为PMIC和DDIC分配一定的产能。


然而,随着电动汽车的增长、5G电信的增长以及所有设备的功耗问题导致了PMIC需求的激增。这种激增影响到晶圆代工厂商对PMIC和DDIC的产能分配。


图8:12英寸晶圆应用和IC价格水平

Source: Omdia


对于12英寸晶圆,从低到高的IC价格排序如下:


  • NOR闪存IC:55–90纳米

  • T-cons: 22–90纳米

  • 用于智能手机LCD和OLED的DDIC:28-55纳米

  • CIS: 22–90纳米

  • TPM IC: 40–60纳米

  • PMIC: 55–90纳米

  • Retimer/redriver IC(用于PC内部传输):110-180纳米

  • USB控制器:28–90纳米

  • MCU: 40–90纳米

  • 存储控制IC:28–40纳米

  • 复杂可编程逻辑器件(CPLD),也是逻辑IC:22-28纳米

  • 现场可编程逻辑门阵列(FPGA),通常是定制的:22-28纳米

  • BMCs,用于PC服务器和网络设备:28-60纳米

  • 网络IC:14纳米以下和14-55纳米,取决于设计和规格

  • CPU,包括GPU:14纳米以下


在12英寸晶圆厂,CPU和GPU是最赚钱的产品。晶圆代工厂商关心的是其12英寸晶圆厂的盈利,而不是保持100%的产能利用率。


就IC价格而言,DDIC是12英寸晶圆产品中价格最低的产品之一。OLED和笔记本显示面板需求的增加,抢占了12英寸晶圆厂40-55纳米制程的更多产能。在28-55纳米节点范围,DDIC有许多产能竞争者,如CIS、TPM、retimer/redriver/MCU和BMC。


推荐阅读

科普;设计一颗芯片有多难,芯片是如何制造的,一片晶圆能切割多少片芯片?

MTK、高通、展锐手机SOC平台汇总(含详细参数对比,更新至2021年12月份)

什么是集成电路、工艺、CPU、GPU、NPU、ISP、DSP ?存储器和内存的区别是什么

一个亿的融资在一家芯片初创公司可以烧多久?

全球移动通信射频前端厂商汇总(含晶圆、封测)

PCB板的价格是怎么算出来的(详解)

MCU最强科普总结(收藏版)


芯存社 移动通信芯片组、存储器、射频前端。
评论
  • 在现代科技浪潮中,精准定位技术已成为推动众多关键领域前进的核心力量。虹科PCAN-GPS FD 作为一款多功能可编程传感器模块,专为精确捕捉位置和方向而设计。该模块集成了先进的卫星接收器、磁场传感器、加速计和陀螺仪,能够通过 CAN/CAN FD 总线实时传输采样数据,并具备内部存储卡记录功能。本篇文章带你深入虹科PCAN-GPS FD的技术亮点、多场景应用实例,并展示其如何与PCAN-Explorer6软件结合,实现数据解析与可视化。虹科PCAN-GPS FD虹科PCAN-GPS FD的数据处
    虹科汽车智能互联 2024-11-29 14:35 149浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 63浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 60浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 161浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 65浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 157浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 118浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 150浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 75浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 88浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦