一文厘清车载毫米波雷达

智驾最前沿 2022-03-02 08:00
--后台回复“资料”,领取特斯拉专利技术解析报告--
首先给大家介绍车载毫米波雷达基本概念。重点从通俗易懂的角度向大家介绍毫米波雷达基本原理、最大探测距离和距离分辨率、最大测速范围和速度分辨率、最大测角范围和角度分辨率。

毫米波雷达原理

毫米波雷达利用发射信号和接收信号之间的频率差来进行测距、测速,利用天线阵元之间的相 位差来进行测角。毫米波雷达系统框图如下图所示:
图1 毫米波雷达系统框图
(1)毫米波雷达首先通过信号发生器(图中LO Gen.)产生我们所需要的雷达信号波形,如现在常用的快速锯齿波或者叫线性调频连续波(FMCW),这时被产生的信号还是基带信号,不能够直接发射出去,还需要多级变频调制处理,将产生的雷达波形信号调制到76GHz~77GHz之间,经过放大器(PA)放大之后,再经发射天线(TX)辐射到空间中去。目前77GHz常用的FMCW波形示意图如下图所示:
图2 FMCW雷达波形示意图
实际雷达工作波形并没有图2这么理想,真正的雷达工作波形将在后面贴上。毫米波雷达在一个工作周期内或者一帧内(简称一个Frame)发射一连串的FMCW信号,一个FMCW就是一个Chirp。如图2所示,一个Frame由N个Chirp组成。
(2)由发射天线辐射的雷达信号照射到空间目标之后,再反射到雷达处,被接收天线(RX)接收,经过低噪声放大(LNA)之后,与参考信号(即雷达发射信号)进行混频,得到复基带信号(I路信号和Q路信号)。经低通滤波之后,通过ADC采样得到离散的复基带信号。车载雷达RF模块与军用雷达由3大不同,首先,车载雷达RF模块现在高度集成化的,集成在一个RF芯片上,而军用雷达的RF是由多个分离式的单元组成;其次,车载雷达为了降低成本,采用的是模拟混频和模拟低通滤波,直接得到基带信号,而军用雷达是采用数字混频和数字带通滤波,得到的是带有一定载频的中频信号,然后采用高速ADC进行采样得到数字中频信号;第三,在混频部分,目前除TI采用I/Q正交混频外,英飞凌和NXP为了降成本,采用的是I单路混频,如图3所示。军用雷达目前普遍采用I/Q正交混频。所以英飞凌和NXP这两家的基带信号强度要比TI的低3dB,但是省掉Q路的混频硬件模块和对应的ADC。
图3 只有I路混频的雷达系统结构图
发射信号和接收信号的混频如下图所示:
图4 单目标情况下的混频结果示意图
从图4可见,对单个目标而言,混频后得到的基带信号是一个频率固定的近似正弦信号。当存在多个目标情况下,基带信号将是多个不同频率的正弦信号的叠加。
(3) ADC采样后的数字信号在DSP中完成相应的信号处理。雷达信号处理流程如图5所示:
图5 雷达信号处理链路流程图
信号处理的具体步骤包括:
1)2D-FFT:首先对每个RX通道的每个Frame内的数据进行2D-FFT处理(R-D处理),得到每个通道的距离-多普勒谱。这个2D-FFT谱是一个复数结果,不能直接进行目标位置和速度信息的提取。因此,我们要进行非相干积累处理。
2)非相干积累:即对每个通道对应的2D-FFT结果取模平方值,然后所有通道的2D-FFT取模平方结果的对应位置求和后平均,得到一张合成后的R-D谱。这就完成了非相干积累处理。合成的R-D谱上的每一个峰值代表一个可能的目标或干扰。非相干积累的目标有2个:首先,是提高信噪比,提高检测精度;其次,平滑噪声,降低CFAR阶段的误检率。
3)CFAR检测:根据非相干积累结果进行恒虚警检测,得到这一帧内所有可能的目标。所有被检测出来的目标并不一定都是真实目标,有可能是很强的杂波干扰。被检测出来的干扰目标可以在目标跟踪阶段进行滤除。根据CFAR检测的可能目标在R-D谱上的对应位置,可以计算出目标的距离和速度信息。
4)角度估计:CFAR完成后虽然得到了每个可能目标的位置和速度信息,但是还没有得到目标的角度信息。为得到每个目标的角度信息,需要利用每个目标在所有接收通道上的对应R-D谱位置上的数据,通过DBF或者空间谱估计方法尽心角度估计,进而得到目标角度信息。
上述步骤完成了对每个目标的距离、速度和角度信息的计算,利用这些信息可以进行聚类和跟踪等处理,进一步得到目标的轨迹信息以及尺寸和类型信息。
接下来为大家介绍一些雷达威力范围和性能指标的计算和评估方法。

雷达威力范围和性能指标

雷达最大探测距离

雷达工作参数决定了雷达最大探测距离,有两种方法可以分析和计算雷达最大探测距离:基于雷达方程的方法和基于雷达调频斜率的方法。首先我们介绍基于雷达方程的最大探测距离估计方法。
假定雷达通过天线往球面空间均匀辐射能量,发射天线功率为 Pt,发射天线增益为 Gt ,那么距离处雷达辐射的功率密度为:
pt=(PtGt)/(4πR²)
在距离 R 处,雷达辐射的部分能量被目标截获,假定目标散射截面积(RCS)为σ,那么被目标截获的功率为
Pσ=σ*pt=(PtGtσ)/(4πR²)
这部分能量又辐射到空间任意方向上去,重新辐射到雷达天线处的功率密度为:
Pr=Pσ/(4πR²)=((PtGtσ)/(4πR²))*(1/4πR²)
此时,有部分能量被雷达接收天线接收,假定雷达接收天线的接受面积为 Ae,那么雷达天线接收的信号功率为:
Pr=Ae*pr=((PtGtσ)/(4πR²))*(Ae/4πR²)
假定雷达接收机灵敏度(最小可检测信号)为 Smin,那么当 Pr=Smin 时,对应的雷达探测距离R就是雷达的最大可探测距离:
Smin=Pr=((PtGtσ)/(4πR²))*(Ae/4πR²)
从上面推导可见,最大探测距离不仅与发射功率和发射天线增益有关,还与目标 RCS和接收机灵敏度有关。目标RCS是个很玄的东西,到现在业内都没人说清RCS是怎么回事,它的机理是什么。因为RCS因素的影响,显著增大了雷达最大探测距离评估的复杂度。因此,不确定因素太多,基于雷达方程来进行最大探测距离评估和计算不是最好的方法。
另一种最大探测距离计算方法比较简单,只与调频斜率和雷达RF的中频带宽。由于RF芯片由中频带宽限制,所以雷达发射和接收信号在混频后,RF芯片接收通道最大可接收的差频信号频率不超过中频带宽的最大值,所以车载雷达最大可探测距离可以表示为:
其中
为 IFmax RF芯片的最大中频带宽;
S为FMCW调制斜率;
c是光速。
因此,在车载雷达系统方案设计时,最大可探测距离可以用第二种方法来计算。
雷达距离分辨率
距离分辨率的概念是:在角度和速度相同的条件下,能够将两个目标区分开来的最小距离间隔。FMCW雷达信号处理中,通常用2D-FFT来进行距离-多普勒处理。所以我们从离散傅里叶变换角度推导距离分辨率如何计算。假定距离维处理时,每个Chirp的有效采样长度为Ta。那么进行傅里叶变换后,对应的频率分辨率为1/Ta 。因此,在距离维上可以区分两个目标的条件是,它们的频率间隔 △f 必须大于1/Ta ,即
又因为频率间隔△f与对应的距离间隔△d之间的关系为
由此可得
其中 B=S x Ta为有效带宽。
所以距离分辨率为
再次强调的是,B是有效带宽,即距离维上你实际采样点数所占时间长度所对应的调制带宽。不是你雷达工作时的整个雷达波形扫频带宽,因为在实际采样过程中,往往对每个Chirp周期内的数据掐头去尾,丢掉质量不好的起始端和末尾段数据,有效带宽往往小于雷达工作时的扫频带宽,如下图所示。
图6 雷达扫频带宽与实际有效带宽的关系
最大不模糊速度
不模糊测速范围表示雷达的最大测速能力。假定雷达发射两个Chirp的FMCW信号,Tc为Chirp周期,如下图所示。
图7 两个Chirp的FMCW信号
假定空间中只有一个目标,目标运动速度为,那么红色Chirp和蓝色Chirp之间因为速度引起的距离徙动为 2vTc ,之所以不是vTc,是因为雷达信号往返有双程差。因此,两个Chirp因为速度引起的相位差为
由此可得
通常△φ的绝对值小于π,因此,最大不模糊速度为
所以当Chirp周期为Tc时,雷达测速范围为 -vmax < v < vmax 。
速度分辨率
与距离分辨率相类似,速度分辨率表征区分两个不同速度目标的能力。因为求解目标目标速度时,是在慢时间维上进行FFT处理,FFT点数为一个Frame内的Chirp数目。假定一个Frame内的Chirp数为N,则速度分辨率为
最大测角范围与角度分辨率
毫米波雷达的最大测角范围与雷达阵列的阵元间距有关。接收阵元接收空间反射回来的信号,相当于在空间维上进行空间采样。雷达天线阵列如下图所示:
图8 雷达天线阵列示意图
假定雷达接收天线阵元间距为L,在角度处有一个目标。那么对于该目标θ,相邻两个接收阵元之间的相位差为
其中△d=L*sin(θ) ,那么 
由此推导得到
因此,当阵元间距等于半波长,即 L=λ/2时,对应的最大不模糊测角范围为 -π/2~+π/2 。
类似的,假定雷达接收阵元数目为  ,那么角度分辨率为
其中,D为接收阵列天线孔径。

整理自汽车ECU开发,文中观点仅供分享交流,不代表本公众号立场,如涉及版权等问题,请您告知,我们将及时处理。

-- END --

智驾最前沿 「智驾最前沿」深耕自动驾驶领域技术、资讯等信息,解读行业现状、紧盯行业发展、挖掘行业前沿,致力于助力自动驾驶发展与落地!公众号:智驾最前沿
评论
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 120浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 50浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 106浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 98浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 84浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 101浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 119浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 108浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 100浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 122浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 68浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 71浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 78浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦