通过实战理解CPU上下文切换

一口Linux 2022-03-01 11:50

击上方“一口Linux”,选择“星标公众号

干货福利,第一时间送达!


Linux是一个多任务的操作系统,可以支持远大于CPU数量的任务同时运行,但是我们都知道这其实是一个错觉,真正是系统在很短的时间内将CPU轮流分配给各个进程,给用户造成多任务同时运行的错觉。所以这就是有一个问题,在每次运行进程之前CPU都需要知道进程从哪里加载、从哪里运行,也就是说需要系统提前帮它设置好CPU寄存器和程序计数器


CPU上下文

CPU上下文其实是一些环境正是有这些环境的支撑,任务得以运行,而这些环境的硬件条件便是CPU寄存器和程序计数器。CPU寄存器是CPU内置的容量非常小但是速度极快的存储设备,程序计数器则是CPU在运行任何任务时必要的,里面记录了当前运行任务的行数等信息,这就是CPU上下文


CPU上下文切换

根据任务的不同,CPU的上下文切换就可以分为进程上下文切换、线程上下文切换、中断上下文切换

进程上下文切换

在Linux中,Linux按照特权等级,将进程的运行空间分为内核空间和用户空间:

内核空间具有最高权限,可以直接访问所有资源

用户空间只能访问受限资源,不能直接访问内存等硬件设备,要想访问这些特权资源,必须通过系统调用

对于一个进程来说,一般是运行在用户态的,但是当需要访问内存、磁盘等硬件设备的时候需要陷入到内核态中,也就是要从用户态到内核态的转变,而这种转变需要通过系统调用来实现,例如一个打开文件的操作,需要调用open()打开文件,read()读取文件内容,write()将文件内容输出到控制台,最后close()关闭文件,这就是系统调用

在系统调用的过程中同样发发生了CPU上下文切换:

CPU寄存器里面原来用户态的指令位置,需要先保存起来,接着运行内核态代码

CPU寄存器需要更新为内核态指令的位置,执行内核态代码

系统调用结束后,CPU寄存器需要恢复原来保存的用户态,然后切换为用户空间,所以一次系统调用的过程,会发生两次的CPU上下文切换

但是我们一般说系统调用是特权模式切换而不是上下文切换,因为这里没有涉及到虚拟内存等这些进程用户态的资源,也不会切换进程是属于进程之内的上下文切换

进程是由内核来管理和调度的,进程的切换只能发生在内核态,所以进程的上下文包含了虚拟内存、栈、全局变量等用户空间的资源,还包含了内核堆栈、寄存器等内核空间的状态,所以进程的上下文切换要比系统调用更多一步,保存该进程的虚拟内存、栈等用户空间的资源

进程上下文切换一般需要几十纳秒到数微秒的CPU时间,当进程上下文切换次数比较多的情况下爱,将导致CPU将大量的时间耗费在寄存器、内核栈即虚拟内存等资源的保存和恢复上,另外,Linux通过TLB快表来管理虚拟内存到物理内存的映射关系,当虚拟内存更新之后,需要刷新缓存,在这多处理系统上是很复杂的,因为多个处理器共享一个缓存

下面再来说说什么时候会进行进程的上下文切换,其实就是进程在被调度的时候需要切换上下文,可能是主动地,也有可能是被动的

系统进程正常调度算法导致进程上下文切换,例如目前使用的时间片轮转算法,当一个进程的时间片耗尽之后,CPU会进项进程的调度切换到其他进程

进程在资源不足的时候,会被挂起例如在等待IO或者内存不足的时候,会主动挂起,并且等待系统调度其他进程

当进程通过一些睡眠函数sleep()主动挂起的时候,也会重新调度

当有高优先级的进程运行时,当前进程也会被挂起

当发生硬件中断时,CPU上的进程会被中断挂起

线程上下文切换

线程是调度的基本单位,而进程则是资源拥有的基本单位,也就是说对于内核中的任务调度是以线程为单位,但是进程只是给线程提供了虚拟内存、全局变量等资源,进程与线程之间的区别这里不再介绍

那么线程上下文的切换,其实分为两种情况:

  1. 前后两个线程属于不同进程,因为资源不共享,所以这时候的线程上下文切换和进程上下文切换是一致的

  2. 前后两个线程属于同一个进程,因为虚拟内存是共享的,所以在切换的时候,虚拟内存这些资源保持不动,只有切换线程的私有数据、寄存器等不共享的资源

所以同进程内的线程切换要比多进程内的线程切换消耗更少的资源

中断上下文切换

中断是为了快速响应硬件的事件,简单来shu就是计算机停下当前的事情,去处理其他的事情,然后在回来继续执行之前的任务,例如我们在调用print函数的时候,其实汇编的底层会帮我们调用一条 int 0x80的指令,便是调用0x80号中断

当然,中断要先将当前进程的状态保存下来,这样中断结束后进程仍然可以从原来的状态恢复运行,中断上下文的切换并不涉及进程的用户态,所以当中断程序打断了正在处于用户态的进程,不需要保存和恢复这个进程的虚拟内存、全局变量等用户态资源,只需要保存和恢复这个进程的内核态中的资源包括CPU寄存器、内核堆栈等

对于同一个CPU来说,中断处理比进程拥有更高的优先级,所以中断上下文切换并不会与进程上下文切换同时发生,一般来说中断程序都执行比较快短小精悍,以便快速结束执行之前的任务。当中断上下文切换次数比较多的时候,会耗费大量的CPU

怎么查看系统上下文

上面已经介绍到CPU上下文切换分为进程上下文切换、线程上下文切换、中断上下文切换,那么过多的上下文切换会把CPU的时间消耗在寄存器、内核栈以及虚拟内存等数据的保存和恢复上,缩短进程真正运行的时间,成为系统性能大幅下降的一个因素

所以我们可以使用vmstat这个工具来查询系统的上下文切换情况,vmstat是一个常用的系统性能分析工具,可以用来分析CPU上下文切换和中断的次数


需要特别关注的是:

cs(context switch):每秒上下文切换的次数in(interrupt):每秒中断的次数r(Running or Runnable):就绪队列的长度,也就是正在运行和等待CPU的进程b(Blocked):处于不可中断睡眠状态的进程数


vmstat是给出整个系统总体的上下文切换情况,要想查看每个进程的详细情况就需要使用pidstat,加上-w选项就可以查看进程上下文切换的情况


需要特别关注的是:

cswch(voluntary context switches):表示每秒自愿上下文切换的次数nvcswch(non voluntary context switches):表示每秒非自愿上下文切换的次数


这两个概念的分别含义:

  1. 自愿上下文切换:进程无法获取所需的资源,导致的上下文切换,例如IO、内存等资源不足时,就会发生自愿上下文切换

  2. 非自愿上下文切换:进程由于时间片已到等时间,被系统强制调度,进而发生的上下文切换,例如大量的进程都在争抢CPU时,就容易发生非自愿上下文切换

实战分析

通过上面的工具已经可以初步查看到系统上下文切换的次数,但是当系统上下文切换的次数为多少时是不正常的呢?

案例使用sysbench工具来模拟多线程调度切换的情况,sysbench是一个多线程的基准测试工具,可以模拟上下文切换过多的问题

首先在第一个终端运行stsbench,模拟多线程切换问题

# 以 10 个线程运行 5 分钟的基准测试,模拟多线程切换的问题
sysbench --threads=10 --max-time=300 threads run

然后在第二个终端运行vmstat,每1秒查看上下文切换的情况


可以观察到如下指标:

  • r列:就绪队列的长度已经到了8左右,已经超过了2个cpu,所以会有大量的CPU竞争

  • us(user)列和sy(system)列,这两列的CPU使用率已经到达100%,并且大量是由sy造成的,说明CPU主要是被内核占用了

  • in(interrupt):in列的数值也到了解决1万,所以中断处理也是一个问题

那我们接着使用pidstat来查看是那一个进程出现了问题,由于pidstat默认是显示进程的指标数据,但是我们使用sysbench模拟的线程的数据,所以需要加上-t选项

gpw@gopuwe:~$ pidstat -wt


所以到这里可以分析出是sysbench的子线程的上下文切换次数有很多

还有一个问题,在使用vmstat的时候,发现in指标的数据也比较多,那么我们需要找出是什么类型的中断导致了中断上升,中断肯定是发生在内核态,但是pidstat只是一个进程的性能分析工具,并不提供任何关于中断的详细信息

我们可以从/proc/interrupts这个只读文件中读取,/proc是一个虚拟文件系统,用于内核空间和用户空间之间的通信,/proc/interrupts则提供了一个只读的中断使用情况,可以使用cat命令查看/proc/interrupts可以发现变化速度最快的是重调度中断RES,这个中断类型表示唤醒空闲状态的CPU来调度新的任务运行,也被成为处理器中断

那么到底上下文切换的次数为多少合适呢?

这个数值其实取决于系统本身的 CPU 性能,在我看来,如果系统的上下文切换次数比较稳

定,那么从数百到一万以内,都应该算是正常的。但当上下文切换次数超过一万次,或者切

换次数出现数量级的增长时,就很可能已经出现了性能问题,这个时候还要根据上下文切换的类型,做具体的分析,例如:

自愿上下文切换变多了,说明进程都在等待资源,有可能发生了 I/O 等其他问题;

非自愿上下文切换变多了,说明进程都在被强制调度,也就是都在争抢 CPU,说明 CPU的确成了瓶颈;

中断次数变多了,说明 CPU 被中断处理程序占用,还需要通过查看 /proc/interrupts 文件

end



一口Linux 


关注,回复【1024】海量Linux资料赠送

精彩文章合集

文章推荐

【专辑】ARM
【专辑】粉丝问答
【专辑】所有原创
专辑linux入门
专辑计算机网络
专辑Linux驱动
【干货】嵌入式驱动工程师学习路线
【干货】Linux嵌入式所有知识点-思维导图


点击“阅读原文”查看更多分享,欢迎点分享、收藏、点赞、在看

一口Linux 写点代码,写点人生!
评论
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 103浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 110浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 141浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 138浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 96浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 92浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 142浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 107浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 170浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 114浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 126浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 143浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦