整套PCB设计流程的checklist,老板再也不怕我出错了!

贸泽电子设计圈 2020-01-13 08:00

No.1 资料输入阶段



  • 在流程上接收到的资料是否齐全(包括:原理图、*.brd文件、料单、PCB设计说明以及PCB设计或更改要求、标准化要求说明、工艺设计说明等文件)。

  • 确认PCB模板是最新的。

  • 时钟器件布局是否合理。

  • 确认模板的定位器件位置无误。

  • PCB设计说明以及PCB设计或更改要求、标准化要是否明确。

  • 确认外形图上的禁止布放器件和布线区已在PCB模板上体现。

  • 比较外形图,确认PCB所标注尺寸及公差无误, 金属化孔和非金属化孔定义准确。

  • 确认PCB模板准确无误后最好锁定该结构文件,以免误操作被移动位置。


No.2 布局后检查阶段



1
器件检查
  • 确认所有器件封装是否与公司统一库一致,是否已更新封装库(用viewlog检查运行结果)如果不一致,一定要更新Symbols。

  • 母板与子板,单板与背板,确认信号对应,位置对应,连接器方向及丝印标识正确,且子板有防误插措施,子板与母板上的器件不应产生干涉。

  • 元器件是否100% 放置。

  • 打开器件TOP和BOTTOM层的place-bound, 查看重叠引起的DRC是否允许。

  • Mark点是否足够且必要。

  • 较重的元器件,应该布放在靠近PCB支撑点或支撑边的地方,以减少PCB的翘曲。

  • 确认所有器件封装是否与公司统一库一致,是否已更新封装库(用viewlog检查运行结果)如果不一致,一定要更新Symbols。

  • 母板与子板,单板与背板,确认信号对应,位置对应,连接器方向及丝印标识正确,且子板有防误插措施,子板与母板上的器件不应产生干涉。

  • 元器件是否100% 放置。

  • 打开器件TOP和BOTTOM层的place-bound, 查看重叠引起的DRC是否允许。

  • Mark点是否足够且必要。

  • 较重的元器件,应该布放在靠近PCB支撑点或支撑边的地方,以减少PCB的翘曲。

  • 与结构相关的器件布好局后最好锁住,防止误操作移动位置。

  • 压接插座周围5mm范围内,正面不允许有高度超过压接插座高度的元件,背面不允许有元件或焊点。

  • 确认器件布局是否满足工艺性要求(重点关注BGA、PLCC、贴片插座)。

  • 金属壳体的元器件,特别注意不要与其它元器件相碰,要留有足够的空间位置。

  • 接口相关的器件尽量靠近接口放置,背板总线驱动器尽量靠近背板连接器放置。

  • 波峰焊面的CHIP器件是否已经转换成波峰焊封装。

  • 手工焊点是否超过50个。

  • 在PCB上轴向插装较高的元件,应该考虑卧式安装。留出卧放空间。并且考虑固定方式,如晶振的固定焊盘。

  • 需要使用散热片的器件,确认与其它器件有足够间距,并且注意散热片范围内主要器件的高度。


2
功能检查
  • 数模混合板的数字电路和模拟电路器件布局时是否已经分开,信号流是否合理。

  • A/D转换器跨模数分区放置。

  • 时钟器件布局是否合理。

  • 高速信号器件布局是否合理。

  • 端接器件是否已合理放置(源端匹配串阻应放在信号的驱动端;中间匹配的串阻放在中间位置;终端匹配串阻应放在信号的接收端)

  • 信号线以不同电平的平面作为参考平面,当跨越平面分割区域时,参考平面间的连接电容是否靠近信号的走线区域。

  • 保护电路的布局是否合理,是否利于分割。单板电源的保险丝是否放置在连接器附近,且前面没有任何电路元件。

  • 确认强信号与弱信号(功率相差30dB)电路分开布设。

  • IC器件的去耦电容数量及位置是否合理。

  • 是否按照设计指南或参考成功经验放置可能影响EMC实验的器件。如:面板的复位电路要稍靠近复位按钮。

3
发热
  • 对热敏感的元件(含液态介质电容、晶振)尽量远离大功率的元器件、散热器等热源。

  • 布局是否满足热设计要求,散热通道(根据工艺设计文件来执行)。


4
电源
  • 是否IC电源距离IC过远。

  • LDO及周围电路布局是否合理。

  • 模块电源等周围电路布局是否合理。

  • 电源的整体布局是否合理。


5
规则设置
  • 是否所有仿真约束都已经正确加到Constraint Manager中。
  • 是否正确设置物理和电气规则(注意电源网络和地网络的约束设置)。
  • Test Via、Test Pin的间距设置是否足够。
  • 叠层的厚度和方案是否满足设计和加工要求。
  • 所有有特性阻抗要求的差分线阻抗是否已经经过计算,并用规则控制。

No.3 布线后检查阶段



1
数模
  • 数字电路和模拟电路的走线是否已分开,信号流是否合理。

  • A/D、D/A以及类似的电路如果分割了地,那么电路之间的信号线是否从两地之间的桥接点上走(差分线例外)。

  • 必须跨越分割电源之间间隙的信号线应参考完整的地平面。

  • 如果采用地层设计分区不分割方式,要确保数字信号和模拟信号分区布线。


2
时钟和高速部分
  • 高速信号线的阻抗各层是否保持一致。

  • 高速差分信号线和类似信号线,是否等长、对称、就近平行地走线。


  • 确认时钟线尽量走在内层。

  • 确认时钟线、高速线、复位线及其它强辐射或敏感线路是否已尽量按3W原则布线。

  • 时钟、中断、复位信号、百兆/千兆以太网、高速信号上是否没有分叉的测试点。

  • LVDS等低电平信号与TTL/CMOS信号之间是否尽量满足了10H(H为信号线距参考平面的高度)。

  • 时钟线以及高速信号线是否避免穿越密集通孔过孔区域或器件引脚间走线。

  • 时钟线是否已满足(SI约束)要求(时钟信号走线是否做到少打过孔、走线短、参考平面连续,主要参考平面尽量是GND;若换层时变换了GND主参考平面层,在离过孔200mil范围之内是GND过孔;若换层时变换不同电平的主参考平面,在离过孔200mil范围之内是否有去耦电容)。
  • 差分对、高速信号线、各类BUS是否已满足(SI约束)要求。


3
EMC与可靠性
  • 对于晶振,是否在其下布一层地;是否避免了信号线从器件管脚间穿越;对高速敏感器件,是否避免了信号线从器件管脚间穿越。



  • 单板信号走线上不能有锐角和直角(一般成 135 度角连续转弯,射频信号线最好采用圆弧形或经过计算以后的切角铜箔)。

  • 对于双面板,检查高速信号线是否与其回流地线紧挨在一起布线;对于多层板,检查高速信号线是否尽量紧靠地平面走线。

  • 对于相邻的两层信号走线,尽量垂直走线。

  • 避免信号线从电源模块、共模电感、变压器、滤波器下穿越。

  • 尽量避免高速信号在同一层上的长距离平行走线。

  • 板边缘还有数字地、模拟地、保护地的分割边缘是否有加屏蔽过孔;多个地平面是否用过孔相连;过孔距离是否小于最高频率信号波长的1/20。

  • 浪涌抑制器件对应的信号走线是否在表层短且粗。

  • 确认电源、地层无孤岛、无过大开槽、无由于通孔隔离盘过大或密集过孔所造成的较长的地平面裂缝、无细长条和通道狭窄现象。

  • 是否在信号线跨层比较多的地方,放置了地过孔(至少需要两个地平面)。


4
电源和地
  • 如果电源/地平面有分割,尽量避免分割开的参考平面上有高速信号的跨越。

  • 确认电源、地能承载足够的电流。过孔数量是否满足承载要求(估算方法:外层铜厚1oz时1A/mm线宽,内层0.5A/mm线宽,短线电流加倍)。

  • 对于有特殊要求的电源,是否满足了压降的要求。

  • 为降低平面的边缘辐射效应,在电源层与地层间要尽量满足20H原则(条件允许的话,电源层的缩进得越多越好)。

  • 如果存在地分割,分割的地是否不构成环路。

  • 相邻层不同的电源平面是否避免了交叠放置。

  • 保护地、-48V地及GND的隔离是否大于2mm。

  • -48V地是否只是-48V的信号回流,没有汇接到其他地;如果做不到请在备注栏说明原因。

  • 靠近带连接器面板处是否布10~20mm的保护地,并用双排交错孔将各层相连。

  • 电源线与其他信号线间距是否距离满足安规要求。


5
禁布区
  • 金属壳体器件和散热器件下,不应有可能引起短路的走线、铜皮和过孔。

  • 安装螺钉或垫圈的周围不应有可能引起短路的走线、铜皮和过孔。

  • 设计要求中预留位置是否有走线。

  • 非金属化孔内层离线路及铜箔间距应大于0.5mm(20mil),外层0.3mm(12mil),单板起拔扳手轴孔内层离线路及铜箔间距应大于2mm(80mil)。

  • 铜皮和线到板边 推荐为大于2mm 最小为0.5mm。

  • 内层地层铜皮到板边 1 ~ 2 mm, 最小为0.5mm。


6
焊盘出线
  • 对于两个焊盘安装的CHIP元件(0805及其以下封装),如电阻、电容,与其焊盘连接的印制线最好从焊盘中心位置对称引出,且与焊盘连接的印制线必须具有一样的宽度,对于线宽小于0.3mm(12mil)的引出线可以不考虑此条规定。

  • 与较宽印制线连接的焊盘,中间最好通过一段窄的印制线过渡(0805及其以下封装)。

  • 线路应尽量从SOIC、PLCC、QFP、SOT等器件的焊盘的两端引出。


7
丝印
  • 器件位号是否遗漏,位置是否能正确标识器件。

  • 器件位号是否符合公司标准要求。

  • 确认器件的管脚排列顺序、第1脚标志、器件的极性标志、连接器的方向标识的正确性。

  • 母板与子板的插板方向标识是否对应。

  • 背板是否正确标识了槽位名、槽位号、端口名称、护套方向。

  • 确认设计要求的丝印添加是否正确。

  • 确认已经放置有防静电和射频板标识(射频板使用)。


8
编码/条码
  • 确认PCB编码正确且符合公司规范。

  • 确认单板的PCB编码位置和层面正确(应该在A面左上方,丝印层)。

  • 确认背板的PCB编码位置和层面正确(应该在B右上方,外层铜箔面)。

  • 确认有条码激光打印白色丝印标示区。

  • 确认条码框下面没有连线和大于0.5mm导通孔。

  • 确认条码白色丝印区外20mm范围内不能有高度超过25mm的元器件。


9
过孔
  • 在回流焊面,过孔不能设计在焊盘上(常开窗的过孔与焊盘的间距应大于0.5mm (20mil),绿油覆盖的过孔与焊盘的间距应大于0.1 mm (4mil),方法:将Same Net DRC打开,查DRC,然后关闭Same Net DRC)。

  • 过孔的排列不宜太密,避免引起电源、地平面大范围断裂。

  • 钻孔的过孔孔径最好不小于板厚的1/10。


10
工艺
  • 器件布放率是否100%,布通率是否100%(没有达到100%的需要在备注中说明)。

  • Dangling线是否已经调整到最少,对于保留的Dangling线已做到一一确认。

  • 工艺科反馈的工艺问题是否已仔细查对。


11
大面积铜箔
  • 对于Top、bottom上的大面积铜箔,如无特殊的需要,应用网格铜(单板用斜网,背板用正交网,线宽0.3mm (12 mil)、间距0.5mm (20mil))。

  • 大面积铜箔区的元件焊盘,应设计成花焊盘,以免虚焊;有电流要求时,则先考虑加宽花焊盘的筋,再考虑全连接。

  • 大面积布铜时,应该尽量避免出现没有网络连接的死铜(孤岛)。

  • 大面积铜箔还需注意是否有非法连线,未报告的DRC。


12
测试点
  • 各种电源、地的测试点是否足够(每2A电流至少有一个测试点)。

  • 确认没有加测试点的网络都是经确认可以进行精简的。

  • 确认没有在生产时不安装的插件上设置测试点。

  • Test Via、Test Pin是否已Fix(适用于测试针床不变的改板)。


13
DRC
  • Test via 和Test pin 的Spacing Rule应先设置成推荐的距离,检查DRC,若仍有DRC存在,再用最小距离设置检查DRC。

  • 打开约束设置为打开状态,更新DRC,查看DRC中是否有不允许的错误。

  • 确认DRC已经调整到最少,对于不能消除DRC要一一确认。


14
光学定位点
  • 确认有贴装元件的PCB面已有光学定位符号。

  • 确认光学定位符号未压线(丝印和铜箔走线)。

  • 光学定位点背景需相同,确认整板使用光学点其中心离边≥5mm。

  • 确认整板的光学定位基准符号已赋予坐标值(建议将光学定位基准符号以器件的形式放置),且是以毫米为单位的整数值。

  • 管脚中心距<0.5mm的IC,以及中心距小于0.8 mm(31 mil)的BGA器件,应在元件对角线附近位置设置光学定位点


15
阻焊检查
  • 确认是否有特殊需求类型的焊盘都正确开窗(尤其注意硬件的设计要求)。

  • BGA下的过孔是否处理成盖油塞孔。

  • 除测试过孔外的过孔是否已做开小窗或盖油塞孔。

  • 光学定位点的开窗是否避免了露铜和露线。

  • 电源芯片、晶振等需铜皮散热或接地屏蔽的器件,是否有铜皮并正确开窗。由焊锡固定的器件应有绿油阻断焊锡的大面积扩散。


16
钻孔图
  • Notes的PCB板厚、层数、丝印的颜色、翘曲度,以及其他技术说明是否正确。

    叠板图的层名、叠板顺序、介质厚度、铜箔厚度是否正确;是否要求作阻抗控制,描述是否准确;叠板图的层名与其光绘文件名是否一致。

  • 将设置表中的Repeat code 关掉,钻孔精度应设置为2-5。

  • 孔表和钻孔文件是否最新(改动孔时,必须重新生成)。

  • 孔表中是否有异常的孔径,压接件的孔径是否正确;孔径公差是否标注正确。

  • 要塞孔的过孔是否单独列出,并标注“filled vias”。


17
光绘
  • 光绘文件输出尽量采用RS274X格式,且精度应设置为5:5。

  • art_aper.txt 是否已最新(274X可以不需要)。

  • 输出光绘文件的log文件中是否有异常报告。

  • 负片层的边缘及孤岛确认。

  • 使用光绘检查工具检查光绘文件是否与PCB 相符(改板要使用比对工具进行比对)。


18
文件齐套
  • PCB文件:产品型号_规格_单板代号_版本号.brd。

  • 背板的衬板设计文件:产品型号_规格_单板代号_版本号-CB[-T/B].brd。

  • PCB加工文件:PCB编码.zip(含各层的光绘文件、光圈表、钻孔文件及ncdrill.log;拼板还需要有工艺提供的拼板文件*.dxf),背板还要附加衬板文件:PCB编码-CB[-T/B].zip(含drill.art、*.drl、ncdrill.log)。

  • 工艺设计文件:产品型号_规格_单板代号_版本号-GY.doc。

  • SMT坐标文件:产品型号_规格_单板代号_版本号-SMT.txt(输出坐标文件时,确认选择 Body center,只有在确认所有SMD器件库的原点是器件中心时,才可选Symbol origin)。

  • PCB板结构文件:产品型号_规格_单板代号_版本号-MCAD.zip(包含结构工程师提供的.DXF与.EMN文件)。

  • 测试文件:产品型号_规格_单板代号_版本号-TEST.ZIP(包含testprep.log 和 untest.lst或者*.drl测试点的坐标文件)。

  • 归档图纸文件:产品型号规格-单板名称-版本号.pdf(包括:封面、首页、各层丝印、各层线路、钻孔图、背板含有衬板图)。


19
标准化
  • 确认封面、首页信息正确。

  • 确认图纸序号(对应PCB各层顺序分配)正确的。

  • 确认图纸框上PCB编码是正确的。


本文转载自:EDA365电子论坛

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。


关于贸泽

贸泽电子设计圈由贸泽电子(Mouser Electronics)开发和运营,服务全球广大电子设计群体,贸泽电子分销超过800家领先品牌,可订购500多万种在线产品,为客户提供一站式采购平台,欢迎关注我们,获取第一手的设计与产业资讯信息!


贸泽电子设计圈 贸泽电子(Mouser Electronics )为全球授权半导体和电子元器件授权分销商,分销750多家领先品牌,可订购500多万种在线产品,为设计工程师和采购人员提供一站式采购平台。
评论 (0)
  • 近日,全球6G技术与产业生态大会(简称“全球6G技术大会”)在南京召开。紫光展锐应邀出席“空天地一体化与数字低空”平行论坛,并从6G通信、感知、定位等多方面分享了紫光展锐在6G前沿科技领域的创新理念及在空天地一体化技术方面的研发探索情况。全球6G技术大会是6G领域覆盖广泛、内容全面的国际会议。今年大会以“共筑创新 同享未来”为主题,聚焦6G愿景与关键技术、安全可信、绿色可持续发展等前沿主题,汇聚国内外24家企业、百余名国际知名高校与科研代表共同商讨如何推动全行业6G标准共识形成。6G迈入关键期,
    紫光展锐 2025-04-17 18:55 117浏览
  •   无人机电磁兼容模拟训练系统软件:全方位剖析   一、系统概述   北京华盛恒辉无人机电磁兼容模拟训练系统软件,专为满足无人机于复杂电磁环境下的运行需求而打造,是一款专业训练工具。其核心功能是模拟无人机在电磁干扰(EMI)与电磁敏感度(EMS)环境里的运行状况,助力用户评估无人机电磁兼容性能,增强其在复杂电磁场景中的适应水平。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为
    华盛恒辉l58ll334744 2025-04-17 14:52 32浏览
  • 一、行业背景与产品需求随着社会对清洁效率与用户体验要求的提升,洗地机行业迎来快速发展期。面对激烈的市场竞争,产品差异化成为制胜关键。传统洗地机普遍存在两大痛点:操作交互单一化与成本控制困境。尤其对于老年用户群体,缺乏语音状态提示和警示功能,导致操作门槛升高;而硬件方案中MCU与语音功能的耦合设计,则增加了系统复杂度与开发成本。WT588F/WTV/WT2003系列语音芯片的引入,为洗地机行业提供了低成本、高集成、强扩展性的解决方案,既满足用户友好性需求,又助力厂商实现硬件架构优化。二、方案核心亮
    广州唯创电子 2025-04-17 08:22 31浏览
  • 1. 在Ubuntu官网下载Ubuntu server  20.04版本https://releases.ubuntu.com/20.04.6/2. 在vmware下安装Ubuntu3. 改Ubuntu静态IP$ sudo vi /etc/netplan/00-installer-config.yaml# This is the network config written by 'subiquity'network:  renderer: networkd&nbs
    二月半 2025-04-17 16:27 50浏览
  • 自动驾驶技术的飞速发展,正在重新定义未来出行的边界。从感知到决策,从规划到控制,每一个环节都离不开海量、精准的高质量数据支撑。然而,随着传感器数量的增加和数据规模的指数级增长,行业正面临一系列挑战:多源传感器数据的时间同步难题、复杂数据格式的适配、测量技术的灵活性不足、设备集成周期冗长等,这些问题正成为自动驾驶研发与测试的“隐形瓶颈”。基于技术积累与行业洞察,本文分享一套创新的ADAS时空融合数据采集方案。通过硬件与软件的深度协同优化,能够很好地解决数据采集中的核心痛点,还为自动驾驶研发提供了高
    康谋 2025-04-17 09:54 34浏览
  •   无人机蜂群电磁作战仿真系统全解析   一、系统概述   无人机蜂群电磁作战仿真系统是专业的仿真平台,用于模拟无人机蜂群在复杂电磁环境中的作战行为与性能。它构建虚拟电磁环境,模拟无人机蜂群执行任务时可能遇到的电磁干扰与攻击,评估作战效能和抗干扰能力,为其设计、优化及实战应用提供科学依据。   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-17 16:29 53浏览
  •   无人机蜂群电磁作战仿真系统软件,是专门用于模拟、验证无人机蜂群在电磁作战环境中协同、干扰、通信以及对抗等能力的工具。下面从功能需求、技术架构、典型功能模块、发展趋势及应用场景等方面展开介绍:   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提供了有力支持。   功能需求   电磁环境建模:模拟构建复杂多样的电磁环境,涵盖各类电磁干扰源与
    华盛恒辉l58ll334744 2025-04-17 16:49 44浏览
  • 现阶段,Zigbee、Z-Wave、Thread、Wi-Fi与蓝牙等多种通信协议在智能家居行业中已得到广泛应用,但协议间互不兼容的通信问题仍在凸显。由于各协议自成体系、彼此割据,智能家居市场被迫催生出大量桥接器、集线器及兼容性软件以在不同生态的设备间构建通信桥梁,而这种现象不仅增加了智能家居厂商的研发成本与时间投入,还严重削减了终端用户的使用体验。为应对智能家居的生态割裂现象,家居厂商需为不同通信协议重复开发适配方案,而消费者则需面对设备入网流程繁琐、跨品牌功能阉割及兼容隐患等现实困境。在此背景
    华普微HOPERF 2025-04-17 17:53 42浏览
  • 【摘要/前言】4月春日花正好,Electronica就在浪漫春日里,盛大启幕。2025年4月15-17日,慕尼黑上海电子展于上海新国际博览中心成功举办。伴随着AI、新能源汽车、半导体的热潮,今年的Electronica盛况空前。请跟随Samtec的视角,感受精彩时刻!【 Samtec展台:老虎的朋友圈技术派对】借天时、占地利、聚人和,Samtec 展台人气爆棚!每年展会与大家相聚,总能收获温暖与动力~Samtec展台位于W3展馆716展位,新老朋友相聚于此,俨然一场线下技术派对!前沿D
    电子资讯报 2025-04-17 11:38 33浏览
  • 一、汽车智能化浪潮下的蓝牙技术革新随着智能网联汽车的快速发展,车载信息娱乐系统(IVI)正从单一的驾驶辅助向“第三生活空间”转型。蓝牙技术作为车内无线连接的核心载体,承担着音频传输、设备互联、数据交互等关键任务。然而,传统方案中MCU需集成蓝牙协议栈,开发周期长、成本高,且功能扩展性受限。WT2605C蓝牙语音芯片应势而生,以双模蓝牙SOC架构重新定义车用蓝牙系统的开发模式,通过“多、快、好、省”四大核心价值,助力车企快速打造高性价比的智能座舱交互方案。二、WT2605C芯片的四大核心优势1.
    广州唯创电子 2025-04-17 08:38 27浏览
  • 一、行业背景与需求智能门锁作为智能家居的核心入口,正从单一安防工具向多场景交互终端演进。随着消费者对便捷性、安全性需求的提升,行业竞争已从基础功能转向成本优化与智能化整合。传统门锁后板方案依赖多颗独立芯片(如MCU、电机驱动、通信模块、语音模块等),导致硬件复杂、功耗高、开发周期长,且成本压力显著。如何通过高集成度方案降低成本、提升功能扩展性,成为厂商破局关键。WTVXXX-32N语音芯片通过“单芯片多任务”设计,将语音播报、电机驱动、通信协议解析、传感器检测等功能整合于一体,为智能门锁后板提供
    广州唯创电子 2025-04-18 09:04 87浏览
  • 一、行业背景与需求随着智能化技术的快速发展和用户对便捷性需求的提升,电动车行业正经历从传统机械控制向智能交互的转型。传统电动车依赖物理钥匙、遥控器和独立防盗装置,存在操作繁琐、功能单一、交互性差等问题。用户期待通过手机等智能终端实现远程控制、实时数据监控及个性化交互体验。为此,将蓝牙语音芯片集成至电动车中控系统,成为推动智能化升级的关键技术路径。二、方案概述本方案通过在电动车中控系统中集成WT2605C蓝牙语音芯片,构建一套低成本、高兼容性的智能交互平台,实现以下核心功能:手机互联控制:支持蓝牙
    广州唯创电子 2025-04-18 08:33 85浏览
  •   无人机电磁环境效应仿真系统:深度剖析   一、系统概述   无人机电磁环境效应仿真系统,专为无人机在复杂电磁环境下的性能评估及抗干扰能力训练打造。借助高精度仿真技术,它模拟无人机在各类电磁干扰场景中的运行状态,为研发、测试与训练工作提供有力支撑。   应用案例   目前,已有多个无人机电磁环境效应仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁环境效应仿真系统。这些成功案例为无人机电磁环境效应仿真系统的推广和应用提供了有力支持。   二、系统功能  
    华盛恒辉l58ll334744 2025-04-17 15:51 50浏览
  • 置信区间反映的是“样本均值”这个统计量的不确定性,因此使用的是标准误(standard error),而不是直接用样本标准差(standard deviation)。标准误体现的是均值的波动程度,而样本标准差体现的是个体数据的波动程度,两者并非一回事,就如下图所显示的一样。下面优思学院会一步一步解释清楚:一、标准差和标准误,究竟差在哪?很多同学对“标准差”和“标准误”这两个概念傻傻分不清楚,但其实差别明显:标准差(Standard Deviation,σ或s):是衡量单个数据点相对于平均值波动的
    优思学院 2025-04-17 13:59 23浏览
  •   北京华盛恒辉无人机电磁兼容模拟训练系统软件是专门用于模拟与分析无人机在复杂电磁环境中电磁兼容性(EMC)表现的软件工具。借助仿真技术,它能帮助用户评估无人机在电磁干扰下的性能,优化电磁兼容设计,保障无人机在复杂电磁环境中稳定运行。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为无人机电磁兼容模拟训练系统的推广和应用提供了有力支持。   系统功能   电磁环境建模:支持三维
    华盛恒辉l58ll334744 2025-04-17 15:10 32浏览
我要评论
0
1
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦