两大头号玩家一个伟大愿景:联邦学习的元生态建设美好世界

点击蓝字 关注我们

SUBSCRIBE to US


新年伊始,世界领先的标准制定机构IEEE标准协会牵头,组织了2022年度联邦学习领域首场重量级尖峰交流活动——联邦学习首创团队带头人、谷歌研究院副总裁Blaise Aguëra y Arcas博士,与联邦学习亚洲奠基人、IEEE联邦学习标准工作组主席、国际人工智能联合会(IJCAI)理事会前主席、微众银行首席人工智能官杨强教授的强强对话。两位联邦学习领域的顶尖学者分别从不同技术路线的研究与实践出发,对联邦学习最新技术进展、国际标准制定及生态系统构建等问题进行了探讨与前瞻。


尖峰对谈:联邦学习奠基人的首次思想碰撞


近年来,人工智能技术快速被应用于千行百业,数据作为新时代的重要生产要素,是各机构、领域乃至社会的基础性战略资源成为全球共识。如何解决“数据孤岛”问题,保证数据安全与隐私保护,成为业界关注的核心问题。联邦学习作为新一代隐私计算关键技术,能有效解决AI协作与联合建模中的隐私保护和数据安全问题,实现“数据不动模型动,数据可用不可见”,因而受到产学研用各界的广泛关注。


在联邦学习技术走向纵深发展的关键期与变革期,IEEE标准协会组织了这场巅峰对话,围绕联邦学习的技术突破与实践进展、生态建设、国际标准等维度,两位联邦学习领域的科学家国际名人进行了精彩纷呈的对话。


事实上,Blaise Aguëra y Arcas博士与杨强教授颇有渊源,双方都在联邦学习技术的发展史上留下了浓墨重彩的一笔。2016年,Blaise Aguëra y Arcas博士所在的谷歌研究团队首次提出基于个人终端设备(C端)的“横向联邦学习”算法框架,正式将联邦学习这一新技术配置引入人工智能领域。2018年,杨强教授团队在国内首次提出面向企业和机构(B端)的“纵向联邦学习”算法框架,成为打破企业与企业、机构与机构间“数据孤岛”阻碍的关键技术,随后又进一步提出了更具通用性的“联邦迁移学习”解决方案,将联邦学习带入了大众视野。


时至今日,联邦学习已被大量应用于金融、医疗、智能营销等多个领域,并于2019年首次列入Gartner数据科学与机器学习技术成熟度曲线,成为当前最值得关注的技术趋势之一。在学术界、工业界和产业界的共同关注与推动下,联邦学习在技术研发、产业应用及国际标准制定方面均取得了高质量的成果的发展成果,并朝着新的发展阶段迈进。


国际共识:联邦学习技术发展进入“生态系统”阶段


对谈中,针对联邦学习“标准化”建设,Blaise Aguëra y Arcas博士与杨强教授一致认为,当前联邦学习“标准化”的几大关键要素:联邦学习持续发展过程中不断升级的安全性需求应对、市场教育与商业化以及联邦学习生态建设的激励机制构建等


关于联邦学习生态的未来前景,无论是基于谷歌C端业务实践还是国内企业级解决方案的应用,两位科学家达成共识:目前,联邦学习已进入“生态系统”阶段,并各自给出了针对如何推动联邦学习生态发展的建议。


Blaise Aguëra y Arcas博士作了一个生动的比喻,“数据迁移好比DNA的交换与移动。在一个巨大的生物体上,分散在不同细胞的DNA能够从一个细胞到另一个细胞的横向转移。同理,联邦学习也像巨大的、分布式有机体,它有一个元基因组,比任何一个特定的细胞都要大得多。”


联邦学习首创团队带头人、谷歌研究院副总裁Blaise Aguëra y Arcas博士


他表示,联邦学习解决了一般机器学习未能解决的问题,即在不牺牲隐私的前提下,实现数据“基因”在生态内的流动,该生态环境十分广阔,甚至可能超过了我们的想象范围。


杨强教授表示认同,他认为这种机器学习在现阶段的变革和自洽正是人工智能进一步成熟化的标志。在他看来,下一步是去利用所有的数据仓库来建立小的模型,这些小模型尽管不能实现实体共享,但能纳入一个模型网络来建立一个虚拟的预训练模型。“这种虚拟模型会更加活跃,在某种意义上也更加先进。是对当前分布的一个更加准确的映射。”


国际标准:联邦学习“标准化”提供规则及通用语言基础


如何让这个联邦学习生态实现“自我进化”?杨强教授认为中立的第三方和开源平台对于生态的健康发展至关重要。


联邦学习亚洲奠基人、IEEE联邦学习标准工作组主席、国际人工智能联合会(IJCAI)理事会前主席、微众银行首席人工智能官杨强教授


他表示,一方面,中立的第三方组织参与共建,有利于消除参与者某些层面的疑虑;得到中立第三方组织认可的“联邦学习IEEE国际标准”为众多参与者的公平使用、交流提供了明确的规则和通用语言。另一方面,以FATE社区为例,联邦学习开源平台提供了丰富的学习、使用资源,让更多人可以去使用,同时做到了让底层代码公开可见,每个使用者都可以去检验代码和系统,这对于联邦学习安全性和隐私保护能够起到正向的促进作用。


联邦学习的最大价值,在于对隐私数据保驾护航,但技术本身的安全性如何保证?对此,杨强教授表示,在联邦学习成熟化的过程中,也必不可少地面临着大家对技术的检视,在模型的构建过程中,从技术角度而言,无论是构建行业标准还是构建原则,大家都应该谨记平衡三点——安全与隐私、计算和通信效率、模型的有效性。


Blaise Aguëra y Arcas博士则介绍,“上述三者之间的均衡一直是业界致力于攻克的技术难题,谷歌也在探索一些技术例如安全聚合以解决上述问题。在过去的几年,无监督学习的兴起给了我很多启发。”他解释,无监督学习通过不使用标签或减少对标签数量、质量的要求来迅速降低深度模型对于数据的标注需求,使得原本无法利用的数据如今都可以加入到模型的训练中去,进而由量变引发质变。他认为未来无监督学习和联邦学习的集成将是一个新的研究方向。对于联邦学习未来的发展他充满信心,他认为,也不排除有个别反对者为了博人眼球来夸大联邦学习的安全漏洞,“你如果真实参与攻击,就会发现,在联邦学习技术保护下,(攻击目标)是多么难以实现。”


IEEE标准协会CXO及中国战略合作总监王亮迪博士作为对话主持人, 在总结时提到,两位科学家让我们看到,联邦学习是个进化中的生命体,色彩纷呈,保护个人用户的隐私、建立社会信任是它的生命力所在。2022年联邦学习迈向超级“元生态”,愿它服务于人类福祉。两位科学家和他们的工作为人师表,让我们加入他们,一起用联邦学习的技术、产业、生态共创美好世界。


微信号|IEEE电气电子工程师

新浪微博|IEEE中国

 · IEEE电气电子工程师学会 · 


IEEE电气电子工程师学会 IEEE是全球最大的专业技术协会之一,一直致力于推动电气电子技术在理论方面的发展和应用方面的进步。IEEE在全球160多个国家有超过四十万名会员。
评论
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 64浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 88浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 198浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 113浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 56浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 162浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 52浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 214浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 105浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 140浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 118浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦