C语言使用面向对象实现IIC驱动

嵌入式大杂烩 2022-02-22 21:37

原文:https://blog.csdn.net/weixin_42700740/article/

前言

前面分享了:干货 | C语言实现面向对象编程(附代码),分享了一些概念及基础例子。这不,给大家找来了嵌入式中的编程实例:C语言使用面向对象实现IIC驱动。

一.简述

使用面向对象的编程思想封装IIC驱动,将IIC的属性和操作封装成一个库,在需要创建一个IIC设备时只需要实例化一个IIC对象即可,本文是基于STM32和HAL库做进一步封装的。

底层驱动方法不重要,封装的思想很重要。在完成对IIC驱动的封装之后借助继承特性实现AT24C64存储器的驱动开发,仍使用面向对象的思想封装AT24C64驱动。

二.IIC驱动面向对象封装

iic.h头文件主要是类模板的定义,具体如下:

//定义IIC类
typedef struct IIC_Type
{

   //属性
   GPIO_TypeDef  *GPIOx_SCL;  //GPIO_SCL所属的GPIO组(如:GPIOA)
   GPIO_TypeDef  *GPIOx_SDA;  //GPIO_SDA所属的GPIO组(如:GPIOA)
   uint32_t GPIO_SCL;     //GPIO_SCL的IO引脚(如:GPIO_PIN_0)
   uint32_t GPIO_SDA;     //GPIO_SDA的IO引脚(如:GPIO_PIN_0)
   //操作
   void (*IIC_Init)(const struct IIC_Type*);        //IIC_Init
   void (*IIC_Start)(const struct IIC_Type*);       //IIC_Start
   void (*IIC_Stop)(const struct IIC_Type*);        //IIC_Stop
   uint8_t (*IIC_Wait_Ack)(const struct IIC_Type*);    //IIC_Wait_ack,返回wait失败或是成功
   void (*IIC_Ack)(const struct IIC_Type*);       //IIC_Ack,IIC发送ACK信号
   void (*IIC_NAck)(const struct IIC_Type*);       //IIC_NAck,IIC发送NACK信号
   void (*IIC_Send_Byte)(const struct IIC_Type*,uint8_t);       //IIC_Send_Byte,入口参数为要发送的字节
   uint8_t (*IIC_Read_Byte)(const struct IIC_Type*,uint8_t);     //IIC_Send_Byte,入口参数为是否要发送ACK信号
   void (*delay_us)(uint32_t);              //us延时
}IIC_TypeDef;


iic.c源文件主要是类模板具体操作函数的实现,具体如下:

//设置SDA为输入模式
static void SDA_IN(const struct IIC_Type* IIC_Type_t)
{
  uint8_t io_num = 0;  //定义io Num号
  switch(IIC_Type_t->GPIO_SDA)
  {
   case GPIO_PIN_0:
    io_num = 0;
   break;
   case GPIO_PIN_1:
    io_num = 1;
   break
   case GPIO_PIN_2:
    io_num = 2;
   break
   case GPIO_PIN_3:
    io_num = 3;
   break;
   case GPIO_PIN_4:
    io_num = 4;
   break
    case GPIO_PIN_5:
    io_num = 5;
   break
   case GPIO_PIN_6:
    io_num = 6;
   break
   case GPIO_PIN_7:
    io_num = 7;
   break;
   case GPIO_PIN_8:
    io_num = 8;
   break
   case GPIO_PIN_9:
    io_num = 9;
   break;
   case GPIO_PIN_10:
    io_num = 10;
   break;
   case GPIO_PIN_11:
    io_num = 11;
   break
   case GPIO_PIN_12:
    io_num = 12;
   break;
   case GPIO_PIN_13:
    io_num = 13;
   break;
   case GPIO_PIN_14:
    io_num = 14;
   break
   case GPIO_PIN_15:
    io_num = 15;
   break;
  }
  IIC_Type_t->GPIOx_SDA->MODER&=~(3<<(io_num*2)); //将GPIOx_SDA->GPIO_SDA清零
  IIC_Type_t->GPIOx_SDA->MODER|=0<<(io_num*2);   //将GPIOx_SDA->GPIO_SDA设置为输入模式
}

//设置SDA为输出模式
static void SDA_OUT(const struct IIC_Type* IIC_Type_t)
{
  uint8_t io_num = 0;  //定义io Num号
  switch(IIC_Type_t->GPIO_SDA)
  {
   case GPIO_PIN_0:
    io_num = 0;
   break;
   case GPIO_PIN_1:
    io_num = 1;
   break
   case GPIO_PIN_2:
    io_num = 2;
   break
   case GPIO_PIN_3:
    io_num = 3;
   break;
   case GPIO_PIN_4:
    io_num = 4;
   break
    case GPIO_PIN_5:
    io_num = 5;
   break
   case GPIO_PIN_6:
    io_num = 6;
   break
   case GPIO_PIN_7:
    io_num = 7;
   break;
   case GPIO_PIN_8:
    io_num = 8;
   break
   case GPIO_PIN_9:
    io_num = 9;
   break;
   case GPIO_PIN_10:
    io_num = 10;
   break;
   case GPIO_PIN_11:
    io_num = 11;
   break
   case GPIO_PIN_12:
    io_num = 12;
   break;
   case GPIO_PIN_13:
    io_num = 13;
   break;
   case GPIO_PIN_14:
    io_num = 14;
   break
   case GPIO_PIN_15:
    io_num = 15;
   break;
  }
  IIC_Type_t->GPIOx_SDA->MODER&=~(3<<(io_num*2)); //将GPIOx_SDA->GPIO_SDA清零
  IIC_Type_t->GPIOx_SDA->MODER|=1<<(io_num*2);   //将GPIOx_SDA->GPIO_SDA设置为输出模式
}
//设置SCL电平
static void IIC_SCL(const struct IIC_Type* IIC_Type_t,int n)
{
  if(n == 1)
  {
    HAL_GPIO_WritePin(IIC_Type_t->GPIOx_SCL,IIC_Type_t->GPIO_SCL,GPIO_PIN_SET);     //设置SCL为高电平
  }
  else{
    HAL_GPIO_WritePin(IIC_Type_t->GPIOx_SCL,IIC_Type_t->GPIO_SCL,GPIO_PIN_RESET);     //设置SCL为低电平
  }
}
//设置SDA电平
static void IIC_SDA(const struct IIC_Type* IIC_Type_t,int n)
{
  if(n == 1)
  {
    HAL_GPIO_WritePin(IIC_Type_t->GPIOx_SDA,IIC_Type_t->GPIO_SDA,GPIO_PIN_SET);     //设置SDA为高电平
  }
  else{
    HAL_GPIO_WritePin(IIC_Type_t->GPIOx_SDA,IIC_Type_t->GPIO_SDA,GPIO_PIN_RESET);     //设置SDA为低电平
  }
}
//读取SDA电平
static uint8_t READ_SDA(const struct IIC_Type* IIC_Type_t)
{
  return HAL_GPIO_ReadPin(IIC_Type_t->GPIOx_SDA,IIC_Type_t->GPIO_SDA);  //读取SDA电平
}
//IIC初始化
static void IIC_Init_t(const struct IIC_Type* IIC_Type_t)
{
      GPIO_InitTypeDef GPIO_Initure;
    
   //根据GPIO组初始化GPIO时钟
   if(IIC_Type_t->GPIOx_SCL == GPIOA || IIC_Type_t->GPIOx_SDA == GPIOA)
   {
     __HAL_RCC_GPIOA_CLK_ENABLE();   //使能GPIOA时钟
   }
   if(IIC_Type_t->GPIOx_SCL == GPIOB || IIC_Type_t->GPIOx_SDA == GPIOB)
   {
     __HAL_RCC_GPIOB_CLK_ENABLE();   //使能GPIOB时钟
   }
   if(IIC_Type_t->GPIOx_SCL == GPIOC || IIC_Type_t->GPIOx_SDA == GPIOC)
   {
     __HAL_RCC_GPIOC_CLK_ENABLE();   //使能GPIOC时钟
   }
   if(IIC_Type_t->GPIOx_SCL == GPIOD || IIC_Type_t->GPIOx_SDA == GPIOD)
   {
     __HAL_RCC_GPIOD_CLK_ENABLE();   //使能GPIOD时钟
   }
   if(IIC_Type_t->GPIOx_SCL == GPIOE || IIC_Type_t->GPIOx_SDA == GPIOE)
   {
     __HAL_RCC_GPIOE_CLK_ENABLE();   //使能GPIOE时钟
   } 
   if(IIC_Type_t->GPIOx_SCL == GPIOH || IIC_Type_t->GPIOx_SDA == GPIOH)
   {
     __HAL_RCC_GPIOH_CLK_ENABLE();   //使能GPIOH时钟
   }     
   
     //GPIO_SCL初始化设置
     GPIO_Initure.Pin=IIC_Type_t->GPIO_SCL;
     GPIO_Initure.Mode=GPIO_MODE_OUTPUT_PP;  //推挽输出
     GPIO_Initure.Pull=GPIO_PULLUP;          //上拉
     GPIO_Initure.Speed=GPIO_SPEED_FREQ_VERY_HIGH;    //快速
     HAL_GPIO_Init(IIC_Type_t->GPIOx_SCL,&GPIO_Initure);
     //GPIO_SDA初始化设置
     GPIO_Initure.Pin=IIC_Type_t->GPIO_SDA;
     GPIO_Initure.Mode=GPIO_MODE_OUTPUT_PP;  //推挽输出
     GPIO_Initure.Pull=GPIO_PULLUP;          //上拉
     GPIO_Initure.Speed=GPIO_SPEED_FREQ_VERY_HIGH;    //快速
     HAL_GPIO_Init(IIC_Type_t->GPIOx_SDA,&GPIO_Initure);
     
            //SCL与SDA的初始化均为高电平
      IIC_SCL(IIC_Type_t,1);
       IIC_SDA(IIC_Type_t,1);
}
//IIC Start
static void IIC_Start_t(const struct IIC_Type* IIC_Type_t)
{
  SDA_OUT(IIC_Type_t);      //sda线输出
  IIC_SDA(IIC_Type_t,1);      
  IIC_SCL(IIC_Type_t,1);
  IIC_Type_t->delay_us(4);
   IIC_SDA(IIC_Type_t,0);  //START:when CLK is high,DATA change form high to low 
  IIC_Type_t->delay_us(4);
  IIC_SCL(IIC_Type_t,0);  //钳住I2C总线,准备发送或接收数据 
}
//IIC Stop
static void IIC_Stop_t(const struct IIC_Type* IIC_Type_t)
{
  SDA_OUT(IIC_Type_t); //sda线输出
  IIC_SCL(IIC_Type_t,0);
  IIC_SDA(IIC_Type_t,0); //STOP:when CLK is high DATA change form low to high
   IIC_Type_t->delay_us(4);
  IIC_SCL(IIC_Type_t,1); 
  IIC_SDA(IIC_Type_t,1); //发送I2C总线结束信号
  IIC_Type_t->delay_us(4); 
}
//IIC_Wait_ack 返回HAL_OK表示wait成功,返回HAL_ERROR表示wait失败
static uint8_t IIC_Wait_Ack_t(const struct IIC_Type* IIC_Type_t)   //IIC_Wait_ack,返回wait失败或是成功
{
  uint8_t ucErrTime = 0;
  SDA_IN(IIC_Type_t);      //SDA设置为输入  
  IIC_SDA(IIC_Type_t,1);IIC_Type_t->delay_us(1);   
  IIC_SCL(IIC_Type_t,1);IIC_Type_t->delay_us(1);
  while(READ_SDA(IIC_Type_t))
  {
    ucErrTime++;
    if(ucErrTime>250)
    {
      IIC_Type_t->IIC_Stop(IIC_Type_t);
      return HAL_ERROR;
    }
  }
  IIC_SCL(IIC_Type_t,0);//时钟输出0     
  return HAL_OK;  
}
//产生ACK应答
static void IIC_Ack_t(const struct IIC_Type* IIC_Type_t)      
{
  IIC_SCL(IIC_Type_t,0);
  SDA_OUT(IIC_Type_t);
  IIC_SDA(IIC_Type_t,0);
  IIC_Type_t->delay_us(2);  
  IIC_SCL(IIC_Type_t,1);
  IIC_Type_t->delay_us(2);  
  IIC_SCL(IIC_Type_t,0);
}
//产生NACK应答
static void IIC_NAck_t(const struct IIC_Type* IIC_Type_t)      
{
  IIC_SCL(IIC_Type_t,0);
  SDA_OUT(IIC_Type_t);
  IIC_SDA(IIC_Type_t,1);
  IIC_Type_t->delay_us(2);  
  IIC_SCL(IIC_Type_t,1);
  IIC_Type_t->delay_us(2);  
  IIC_SCL(IIC_Type_t,0);
}
//IIC_Send_Byte,入口参数为要发送的字节
static void IIC_Send_Byte_t(const struct IIC_Type* IIC_Type_t,uint8_t txd)     
{
     uint8_t t = 0;   
     SDA_OUT(IIC_Type_t);      
     IIC_SCL(IIC_Type_t,0);//拉低时钟开始数据传输
     for(t=0;t<8;t++)
     {              
          IIC_SDA(IIC_Type_t,(txd&0x80)>>7);
          txd <<= 1;    
       IIC_Type_t->delay_us(2);     //对TEA5767这三个延时都是必须的
       IIC_SCL(IIC_Type_t,1);
       IIC_Type_t->delay_us(2);  
       IIC_SCL(IIC_Type_t,0); 
       IIC_Type_t->delay_us(2);  
     }  
}
//IIC_Send_Byte,入口参数为是否要发送ACK信号
static uint8_t IIC_Read_Byte_t(const struct IIC_Type* IIC_Type_t,uint8_t ack)     
{
   uint8_t i,receive = 0;
   SDA_IN(IIC_Type_t);//SDA设置为输入
   for(i=0;i<8;i++ )
   {
      IIC_SCL(IIC_Type_t,0); 
      IIC_Type_t->delay_us(2);
      IIC_SCL(IIC_Type_t,1);
      receive<<=1;
      if(READ_SDA(IIC_Type_t))receive++;   
      IIC_Type_t->delay_us(1);
   }      
  if (!ack)
         IIC_Type_t->IIC_NAck(IIC_Type_t);//发送nACK
  else
         IIC_Type_t->IIC_Ack(IIC_Type_t); //发送ACK   
  return receive;
}
//实例化一个IIC1外设,相当于一个结构体变量,可以直接在其他文件中使用
IIC_TypeDef IIC1 = {
  .GPIOx_SCL = GPIOA,   //GPIO组为GPIOA
  .GPIOx_SDA = GPIOA,   //GPIO组为GPIOA
  .GPIO_SCL = GPIO_PIN_5,   //GPIO为PIN5
  .GPIO_SDA = GPIO_PIN_6,  //GPIO为PIN6
  .IIC_Init = IIC_Init_t,
  .IIC_Start = IIC_Start_t,
  .IIC_Stop = IIC_Stop_t,
  .IIC_Wait_Ack = IIC_Wait_Ack_t,
  .IIC_Ack = IIC_Ack_t,
  .IIC_NAck = IIC_NAck_t,
  .IIC_Send_Byte = IIC_Send_Byte_t,
  .IIC_Read_Byte = IIC_Read_Byte_t,
  .delay_us = delay_us     //需自己外部实现delay_us函数
};

上述就是IIC驱动的封装,由于没有应用场景暂不测试其实用性,待下面ATC64的驱动缝缝扎黄写完之后一起测试使用。

三.ATC64XX驱动封装实现

at24cxx.h头文件主要是类模板的定义,具体如下:

// 以下是共定义个具体容量存储器的容量
#define AT24C01  127
#define AT24C02  255
#define AT24C04  511
#define AT24C08  1023
#define AT24C16  2047
#define AT24C32  4095
#define AT24C64   8191         //8KBytes
#define AT24C128 16383
#define AT24C256 32767  

//定义AT24CXX类
typedef struct AT24CXX_Type
{

  //属性
  u32 EEP_TYPE;           //存储器类型(存储器容量)
  //操作
  IIC_TypeDef IIC;       //IIC驱动
  uint8_t (*AT24CXX_ReadOneByte)(const struct AT24CXX_Type*,uint16_t);  //指定地址读取一个字节
  void (*AT24CXX_WriteOneByte)(const struct AT24CXX_Type*,uint16_t,uint8_t); //指定地址写入一个字节
  void (*AT24CXX_WriteLenByte)(uint16_t,uint32_t,uint8_t); //指定地址开始写入指定长度的数据
  uint32_t (*AT24CXX_ReadLenByte)(uint16_t,uint8_t);   //指定地址开始读取指定长度数据
  void (*AT24CXX_Write)(uint16_t,uint8_t *,uint16_t);  //指定地址开始写入指定长度的数据
  void (*AT24CXX_Read)(uint16_t,uint8_t *,uint16_t);   //指定地址开始写入指定长度的数据
  void (*AT24CXX_Init)(const struct AT24CXX_Type*); //初始化IIC
  uint8_t (*AT24CXX_Check)(const struct AT24CXX_Type*);   //检查器件
}AT24CXX_TypeDef;

extern AT24CXX_TypeDef AT24C_64;     //外部声明实例化AT24CXX对象


at24cxx.c源文件主要是类模板具体操作函数的实现,具体如下:

//在AT24CXX指定地址读出一个数据
//ReadAddr:开始读数的地址  
//返回值  :读到的数据
static uint8_t AT24CXX_ReadOneByte_t(const struct AT24CXX_Type* AT24CXX_Type_t,uint16_t ReadAddr)
{      
  uint8_t temp=0;                          
  AT24CXX_Type_t->IIC.IIC_Start(&AT24CXX_Type_t->IIC);  
  //根据AT的型号发送不同的地址
  if(AT24CXX_Type_t->EEP_TYPE > AT24C16)
  {
    AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,0XA0);    //发送写命令
    AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);
    AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,ReadAddr>>8);//发送高地址     
  }else AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,0XA0+((ReadAddr/256)<<1));   //发送器件地址0XA0,写数据     
  AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC); 
  AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,ReadAddr%256);   //发送低地址
  AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);     
  AT24CXX_Type_t->IIC.IIC_Start(&AT24CXX_Type_t->IIC);        
  AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,0XA1);           //进入接收模式      
  AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);  
  temp=AT24CXX_Type_t->IIC.IIC_Read_Byte(&AT24CXX_Type_t->IIC,0);     
  AT24CXX_Type_t->IIC.IIC_Stop(&AT24CXX_Type_t->IIC);//产生一个停止条件     
  return temp;
}
//在AT24CXX指定地址写入一个数据
//WriteAddr  :写入数据的目的地址    
//DataToWrite:要写入的数据
static void AT24CXX_WriteOneByte_t(const struct AT24CXX_Type* AT24CXX_Type_t,uint16_t WriteAddr,uint8_t DataToWrite)
{                                
   AT24CXX_Type_t->IIC.IIC_Start(&AT24CXX_Type_t->IIC);   
  if(AT24CXX_Type_t->EEP_TYPE > AT24C16)
  {
    AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,0XA0);    //发送写命令
    AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);
    AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,WriteAddr>>8);//发送高地址     
  }else AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,0XA0+((WriteAddr/256)<<1));   //发送器件地址0XA0,写数据     
  AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC); 
   AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,WriteAddr%256);   //发送低地址
  AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);               
  AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,DataToWrite);     //发送字节          
  AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);            
   AT24CXX_Type_t->IIC.IIC_Stop(&AT24CXX_Type_t->IIC);//产生一个停止条件 
 AT24CXX_Type_t->IIC.delay_us(10000);  
}
//在AT24CXX里面的指定地址开始写入长度为Len的数据
//该函数用于写入16bit或者32bit的数据.
//WriteAddr  :开始写入的地址  
//DataToWrite:数据数组首地址
//Len        :要写入数据的长度2,4
static void AT24CXX_WriteLenByte_t(uint16_t WriteAddr,uint32_t DataToWrite,uint8_t Len)
{   
  uint8_t t;
  for(t=0;t  {
    AT24CXX_WriteOneByte(WriteAddr+t,(DataToWrite>>(8*t))&0xff);
  }                
}
//在AT24CXX里面的指定地址开始读出长度为Len的数据
//该函数用于读出16bit或者32bit的数据.
//ReadAddr   :开始读出的地址 
//返回值     :数据
//Len        :要读出数据的长度2,4
static uint32_t AT24CXX_ReadLenByte_t(uint16_t ReadAddr,uint8_t Len)
{   
  uint8_t t;
  uint32_t temp=0;
  for(t=0;t  {
    temp<<=8;
     temp+=AT24CXX_ReadOneByte(ReadAddr+Len-t-1);          
  }
  return temp;                
}
//在AT24CXX里面的指定地址开始写入指定个数的数据
//WriteAddr :开始写入的地址 对24c64为0~8191
//pBuffer   :数据数组首地址
//NumToWrite:要写入数据的个数
static void AT24CXX_Write_t(uint16_t WriteAddr,uint8_t *pBuffer,uint16_t NumToWrite)
{
  while(NumToWrite--)
  {
   AT24CXX_WriteOneByte(WriteAddr,*pBuffer);
    WriteAddr++;
    pBuffer++;
  }
}
//在AT24CXX里面的指定地址开始读出指定个数的数据
//ReadAddr :开始读出的地址 对24c64为0~8191
//pBuffer  :数据数组首地址
//NumToRead:要读出数据的个数
static void AT24CXX_Read_t(uint16_t ReadAddr,uint8_t *pBuffer,uint16_t NumToRead)
{
  while(NumToRead)
  {
    *pBuffer++=AT24CXX_ReadOneByte(ReadAddr++); 
    NumToRead--;
  }

//初始化IIC接口
static void AT24CXX_Init_t(const struct AT24CXX_Type* AT24CXX_Type_t)
{
  AT24CXX_Type_t->IIC.IIC_Init(&AT24CXX_Type_t->IIC);//IIC初始化
}
//检查器件,返回0表示检测成功,返回1表示检测失败
static uint8_t AT24CXX_Check_t(const struct AT24CXX_Type* AT24CXX_Type_t)   
{
 uint8_t temp;
  temp = AT24CXX_Type_t->AT24CXX_ReadOneByte(AT24CXX_Type_t,AT24CXX_Type_t->EEP_TYPE);//避免每次开机都写AT24CXX      
  if(temp == 0X33)return 0;     
  else//排除第一次初始化的情况
  {
      AT24CXX_Type_t->AT24CXX_WriteOneByte(AT24CXX_Type_t,AT24CXX_Type_t->EEP_TYPE,0X33);
       temp = AT24CXX_Type_t->AT24CXX_ReadOneByte(AT24CXX_Type_t,AT24CXX_Type_t->EEP_TYPE);
      if(temp==0X33)return 0;
  }
  return 1;  
}
//实例化AT24CXX对象
AT24CXX_TypeDef AT24C_64={
 .EEP_TYPE = AT24C64,           //存储器类型(存储器容量)
 //操作
 .IIC={
  .GPIOx_SCL = GPIOA,
  .GPIOx_SDA = GPIOA,
  .GPIO_SCL = GPIO_PIN_5,
  .GPIO_SDA = GPIO_PIN_6,
  .IIC_Init = IIC_Init_t,
  .IIC_Start = IIC_Start_t,
  .IIC_Stop = IIC_Stop_t,
  .IIC_Wait_Ack = IIC_Wait_Ack_t,
  .IIC_Ack = IIC_Ack_t,
  .IIC_NAck = IIC_NAck_t,
  .IIC_Send_Byte = IIC_Send_Byte_t,
  .IIC_Read_Byte = IIC_Read_Byte_t,
  .delay_us = delay_us
 },                   //IIC驱动
 .AT24CXX_ReadOneByte = AT24CXX_ReadOneByte_t,  //指定地址读取一个字节
 .AT24CXX_WriteOneByte = AT24CXX_WriteOneByte_t,//指定地址写入一个字节
 .AT24CXX_WriteLenByte = AT24CXX_WriteLenByte_t, //指定地址开始写入指定长度的数据
 .AT24CXX_ReadLenByte = AT24CXX_ReadLenByte_t,   //指定地址开始读取指定长度数据
 .AT24CXX_Write = AT24CXX_Write_t,  //指定地址开始写入指定长度的数据
 .AT24CXX_Read = AT24CXX_Read_t,   //指定地址开始读取指定长度的数据
 .AT24CXX_Init = AT24CXX_Init_t, //初始化IIC
 .AT24CXX_Check = AT24CXX_Check_t   //检查器件
};

简单分析:可以看出AT24CXX类中包含了IIC类的成员对象,这是一种包含关系,因为没有属性上的一致性因此谈不上继承。

之所以将IIC的类对象作为AT24CXX类的成员是因为AT24CXX的实现需要调用IIC的成员方法,IIC相当于AT24CXX更下层的驱动,因此采用包含关系更合适。

因此我们在使用AT24CXX的时候只需要实例化AT24CXX类对象就行了,因为IIC包含在AT24CXX类中间,因此不需要实例化IIC类对象,对外提供了较好的封装接口。下面我们看具体的调用方法。

四.主函数main调用测试

在main函数中直接使用AT24C_64来完成所有操作,下面结合代码来看:

#include "at24cxx.h"    //为了确定AT24C_64的成员方法和引用操作对象AT24C_64
int main(void)
{
  /************省略其他初始化工作****************/
  //第一步:调用对象初始化方法来初始化AT24C64
  AT24C_64.AT24CXX_Init(&AT24C_64);
  //第二步:调用对象检测方法来检测AT24C64           
  if(AT24C_64.AT24CXX_Check(&AT24C_64) == 0)
  {
    printf("AT24C64检测成功\r\n");
  }
  else{
    printf("AT24C64检测失败\r\n");
  }
  return 0;
}

可以看出所有的操作都是通过AT24C_64对象调用完成的,在我们初始化好AT24C_64对象之后就可以放心大胆的调用其成员方法,这样封装的好处就是一个设备对外只提供一个对象接口,简洁明了。

五.总结

本文详细介绍了面向对象方法实现IIC驱动封装以及AT24CXX存储器的封装,最终对外仅提供一个操作对象接口,大大提高了代码的复用性以及封装性。

温馨提示

由于微信公众号近期改变了推送规则,如果您想经常看到我们的文章,可以在每次阅读后,在页面下方点一个「赞」或「在看」,这样每次推送的文章才会第一时间出现在您的订阅列表里。

版权声明:本文来源网络,免费传达知识,版权归原作者所有。如涉及作品版权问题,请联系我进行删除。


猜你喜欢:

嵌入式周报 | 第 3 期

嵌入式周报 | 第 2 期

嵌入式周报 | 第 1 期

干货 | 嵌入式OTA升级实现原理

几个Makefile通用模板分享!

分享一份嵌入式软件工具清单!

实用 | 一个高性能通信库的简单使用分享

实用工具 | LVGL GUI-Guider的使用分享

C语言、嵌入式中几个非常实用的宏技巧

在公众号聊天界面回复1024,可获取嵌入式资源;回复 ,可查看文章汇总。

点击阅读原文,查看更多分享。

点个

嵌入式大杂烩 专注于嵌入式技术,包括但不限于C/C++、嵌入式、物联网、Linux等编程学习笔记,同时,内包含大量的学习资源。欢迎关注,一同交流学习,共同进步!
评论 (0)
  • 在电子电路设计和调试中,晶振为电路提供稳定的时钟信号。我们可能会遇到晶振有电压,但不起振,从而导致整个电路无法正常工作的情况。今天凯擎小妹聊一下可能的原因和解决方案。1. 误区解析在硬件调试中,许多工程师在测量晶振时发现两端都有电压,例如1.6V,但没有明显的压差,第一反应可能是怀疑短路。晶振电路本质上是一个交流振荡电路。当晶振未起振时,两端会静止在一个中间电位,通常接近电源电压的一半。万用表测得的是稳定的直流电压,因此没有压差。这种情况一般是:晶振没起振,并不是短路。2. 如何判断真
    koan-xtal 2025-04-28 05:09 115浏览
  •  探针台的维护直接影响其测试精度与使用寿命,需结合日常清洁、环境控制、定期校准等多维度操作,具体方法如下:一、日常清洁与保养1.‌表面清洁‌l 使用无尘布或软布擦拭探针台表面,避免残留清洁剂或硬物划伤精密部件。l 探针头清洁需用非腐蚀性溶剂(如异丙醇)擦拭,检查是否弯曲或损坏。2.‌光部件维护‌l 镜头、观察窗等光学部件用镜头纸蘸取wu水jiu精从中心向外轻擦,操作时远离火源并保持通风。3.‌内部防尘‌l 使用后及时吹扫灰尘,防止污染物进入机械滑
    锦正茂科技 2025-04-28 11:45 72浏览
  • 4月22日下午,备受瞩目的飞凌嵌入式「2025嵌入式及边缘AI技术论坛」在深圳深铁皇冠假日酒店盛大举行,此次活动邀请到了200余位嵌入式技术领域的技术专家、企业代表和工程师用户,共享嵌入式及边缘AI技术的盛宴!1、精彩纷呈的展区产品及方案展区是本场活动的第一场重头戏,从硬件产品到软件系统,从企业级应用到高校教学应用,都吸引了现场来宾的驻足观看和交流讨论。全产品矩阵展区展示了飞凌嵌入式丰富的产品线,从嵌入式板卡到工控机,从进口芯片平台到全国产平台,无不体现出飞凌嵌入式在嵌入式主控设备研发设计方面的
    飞凌嵌入式 2025-04-28 14:43 92浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 81浏览
  •     今天,纯电动汽车大跃进牵引着对汽车电气低压的需求,新需求是48V。车要更轻,料要堆满。车身电子系统(电子座舱)从分布改成集中(域控),电气上就是要把“比12V系统更多的能量,送到比12V系统数量更少的ECU去”,所以,电源必须提高电压,缩小线径。另一方面,用比传统12V,24V更高的电压,有利于让电感类元件(螺线管,电机)用更细的铜线,缩小体积去替代传统机械,扩大整车电气化的边界。在电缆、认证行业60V标准之下,48V是一个合理的电压。有关汽车电气低压,另见协议标准第
    电子知识打边炉 2025-04-27 16:24 219浏览
  • 一、智能家居的痛点与创新机遇随着城市化进程加速,现代家庭正面临两大核心挑战:情感陪伴缺失:超60%的双职工家庭存在“亲子陪伴真空期”,儿童独自居家场景增加;操作复杂度攀升:智能设备功能迭代导致用户学习成本陡增,超40%用户因操作困难放弃高阶功能。而WTR096-16S录音语音芯片方案,通过“语音交互+智能录音”双核驱动,不仅解决设备易用性问题,更构建起家庭成员间的全天候情感纽带。二、WTR096-16S方案的核心技术突破1. 高保真语音交互系统动态情绪语音库:支持8种语气模板(温柔提醒/紧急告警
    广州唯创电子 2025-04-28 09:24 122浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 88浏览
  • 晶振在使用过程中可能会受到污染,导致性能下降。可是污染物是怎么进入晶振内部的?如何检测晶振内部污染物?我可不可以使用超声波清洗?今天KOAN凯擎小妹将逐一解答。1. 污染物来源a. 制造过程:生产环境不洁净或封装密封不严,可能导致灰尘和杂质进入晶振。b. 使用环境:高湿度、温度变化、化学物质和机械应力可能导致污染物渗入。c. 储存不当:不良的储存环境和不合适的包装材料可能引发化学物质迁移。建议储存湿度维持相对湿度在30%至75%的范围内,有助于避免湿度对晶振的不利影响。避免雨淋或阳光直射。d.
    koan-xtal 2025-04-28 06:11 96浏览
  • 2025年全球人形机器人产业迎来爆发式增长,政策与资本双重推力下,谷歌旗下波士顿动力、比亚迪等跨国企业与本土龙头争相入局,产业基金与风险投资持续加码。仅2025年上半年,中国机器人领域就完成42笔战略融资,累计金额突破45亿元,沪深两市机器人指数年内涨幅达68%,印证了资本市场对智能终端革命的强烈预期。值得关注的是,国家发展改革委联合工信部发布《人形机器人创新发展行动计划》,明确将仿生感知系统、AI决策中枢等十大核心技术纳入"十四五"国家重大专项,并设立500亿元产业引导基金。技术突破方面,本土
    电子资讯报 2025-04-27 17:08 239浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 29浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦