800VSiC电驱系统分析


欢迎加入技术交流QQ群(2000人):电力电子技术与新能源 739609936


高可靠新能源行业顶尖自媒体


在这里有电力电子、新能源干货、行业发展趋势分析、最新产品介绍、众多技术达人与您分享经验,欢迎关注微信公众号:电力电子技术与新能源(Micro_Grid),论坛:www.21micro-grid.com,建立的初衷就是为了技术交流,作为一个与产品打交道的技术人员,市场产品信息和行业技术动态也是必不可少的,希望大家不忘初心,怀有一颗敬畏之心,做出更好的产品!

电力电子技术与新能源论坛

www.21micro-grid.com


小编推荐值得一看的书单电力电子技术与新能源推荐书单


  • The Power MOSFET 应用手册

  • [视频]反激电路Flyback

  • 车用永磁同步电机控制及弱磁方法

  • [视频]IGBT模块技术参数详解

  • [视频]英飞凌双脉冲实验教具使用说明

  • 碳化硅在光伏逆变器中的应用-阳光电源

  • 华为精华资料—终端互连PCB设计规范分享

  • 复旦电赛培训_辅助电源_刘祖望_电力电子技术与新能源

  • 环路指导书LOOP Training

  • [视频]浙大碳化硅技术发展与应用介绍


交通运输行业的全球电气化需要开发高效且具有成本效益的电气化动力系统解决方案。牵引系统中 800 V 的应用实现了快速充电的优势,并可以减少导体的横截面积以降低重量和成本。
由于电池仍然是电驱动系统的最主要成本构成,因此以最高效的方式使用电池提供的能量是很重要的,从电能到机械能的转换效率即电驱动系统效率就显得及其重要。为了提高效率,必须减少功率损耗:①逆变器的功率损耗必须保持在较低水平,②同时必须降低电动机的谐波损耗。碳化硅 (SiC) 技术的应用,为 800 V 系统提供了实现这两个目标的可能性。
众所周知,SiC功率器件比硅Si更高效,因为轻载导通损耗和开关损耗都更低。SiC技术可实现更高的开关频率,从而通过降低谐波损耗来提高电机的效率。SiC半导体材料特性、效率优化的模块设计以及改进的控制技术相结合,组成了由逆变器 和电机组成的高效牵引系统。对于优化设计后的系统,在 WLTP 循环中,驱动系统效率可提高4‑8%。       

01.
电驱系统效率提升
纯电动汽车 (BEV) 的成功取决于两个主要方面。汽车的购置成本和客户可用性。BEV 的电池续航里程仍然是客户可用性最重要的特征之一。 
电池续航里程定义了每次电池充电的最大行驶距离和长途旅行的充电时间。这两个标准都会受到牵引系统电压水平的影响。更高的 800 V 系统电压而不是 400 V 的通用电压允许在恒定电缆横截面下更快地为电池充电(大功率充电、超快速充电)。 
目前的产品中,IGBT用作逆变器中的开关元件,在 800 V 的电压下表现出效率劣势,因为IGBT开关损耗太大。要高效使用更高的电压,需要更高效的开关技术,请参见图1.
SiC‑MOSFET的应用,可以满足在高电压平台下高开关频率的高效优势,以及高压摆率 (dv/dt) 。更高的开关频率降低了电机的谐波损耗。因此,SiC是通往更高系统电压的关键技术。
如果可以找到电机和逆变器的两条随开关频率相反运行的损耗曲线之间的最佳平衡,则 WLTP 系统级(800 V Si 系统与 800 V SiC 系统相比)的效率可能提高 4 % 至 8 %)。效率描述了存储在电池中的能量与用于产生牵引力的能量之比。 
因此,更高的效率可以实现在电池容量相同的情况下更长的里程,或者在电池容量降低的情况下产生里程不变。因此,提高效率是优化 BEV 成本的最大措施。SiC 技术应用带来的是系统成本优势,因为它们可以节省更多的电池。 
以下基于前大陆动力总成具有 SiC MOSFET 的 800 V 的EMR4 的电力电子控制器(逆变 )来分析。

02.
开关频率和电压压摆率(dv/dt)在系统层面的影响
在电机运行期间,逆变器将电池提供的直流电压转换为快速脉冲电压。该脉冲电压会产生谐波交流 (AC) 电流。交流相电流产生转子跟随的旋转电磁场。通过这种方式,脉冲电信号逐渐接近均匀正弦波形(40 kHz 及更高)的最佳值,高频损耗减小。电流的频谱变得“更干净”,从而减少了以发热形式出现的谐波损耗。
图2 显示了损耗开关频率之间的关系‑ 其中:
            电机的总损耗 – PL,EM,total
            逆变器总损耗  – PL,PE,total 
              – 在牵引系统的某个工作点。
电机损耗曲线为绿色,红色为电力电子损耗。
特性曲线描述了每个参数的开关频率的理论相关性:随着开关频率的增加,电机谐波损耗Ph,total 逐渐减少,所以总电机损耗 PL,EM,total  逐步向纯正弦电流波形产生的铁损值收敛 PL,total (水平虚线)。显示的图表是电机高分辨率 FEM 模拟的结果 。灰色标记频率区域的频率相关功率损耗的准确性相对于20kHz之前要低,由于仿真的模拟步长为5us。 
逆变器总损耗 PL,PE,total 由导通损耗PL,cond和开关损耗 PL,SW 组成,开关损耗随开关频率线性增加。同时,该半导体的导通损耗不受开关频率的影响。因此,逆变器总损耗预计会随着开关频率的增加而线性增加,与开关损耗的增加相同,见图2。
上述分析基础是一个 800 V 系统,逆变器中使用了 SiC MOSFET。特征曲线在图2 展示了 SiC 技术在逆变 功率模块中的关键作用,作为实现最高系统效率的关键因素。图2 进一步表明,系统级的最佳开关频率必须定义为提高效率(平衡点)的影响因素。
与Si逆变相比,SiC逆变技术的全部潜力基于开关频率和压摆率高10倍的可能性。图3演示了电压压摆率 (dv/dt) 对逆变损耗的影响。
带有 SiC MOSFET 的高效 800 V 牵引系统的当前开发研究了如何在不产生额外的干扰的情况下使用 SiC 技术的潜力(参见第 3 章和第 4 章),为了充分发挥 SiC 技术的潜力,必须考虑系统在高开关频率和高电压压摆率下的电磁兼容性 (EMC) 以及噪声振动 (NVH) 问题。如图2所示,特别是较低的开关频率对 NVH 具有关键影响。EMC正好相反,较高的开关频率和压摆率会导致更多的干扰。

03.
对逆变器的影响
当今最先进的 400 V Si‑IGBT 逆变 在 8 至 10 kHz 的开关频率下运行。电压压摆率通常高达 5 kV/µs。图 4 显示了单个逆变系统 (Si / SiC) 的差异以及不同输出功率下产生的损耗。累积的总功率损耗分为开关损耗和导通损耗。   
传统 Si 技术和 SiC 技术在 800 V 下的总功率损耗之间存在显著差异。该图证实了 800 V 电压只能与 SiC 半导体一起使用。
评估逆变器的决定性因素是驱动系统在 WLTP 循环工况下的效率。图 5 说明了逆变器对 WLTP 中系统效率的影响。条形图的黄色部分显示了 800 V SiC 相对于 800 V Si 解决方案的优势——尽管在这两种情况下都只应用了 10 kHz 的开关频率和 5 kV/µs 的电压压摆率。配备 SiC 半导体的逆变 可能会在更高的频率和转换率下运行(典型值:开关频率:10 ... 40 kHz,dv/dt:5 ... 50 kV/us)。左侧的第二个栏图 5 显示了如果将 Si 逆变 用于800 V 系统,损耗将如何变化。 
  图1 - 5所示SiC技术在不同方面的更高效率是基于嵌入在硅中的碳原子在材料基体中的高载流子迁移率。
 由于导通电阻低,在SiC半导体中产生的热损失很低。这允许更高的开关频率,紧凑的封装空间和减少功率模块的冷却能力需求。因此,SiC半导体比Si半导体需要更小的封装空间,可以实现更高的功率密度。
3.1 更高导电性的优势
在今天的汽车牵引逆变器(400 V系统电压水平和高达10 kHz的开关频率)低损耗硅IGBT与一个并联的二极管(自由运行分别回流到电池)。反向电压(反电势)在650…750之间时,IGBT需要比较复杂的控制,但由于在额定电压下的高效率,它就像“完美的开关”一样工作。Mosfet(金属氧化物半导体场效应晶体管:简单地说:电压控制电阻)更容易控制。在Si基半导体材料基础上,在开关过程中Mosfet比硅IGBT有更高的电阻(R)(R在漏/源上= Rdson)。
在400 V时,较高的硅MOSFET功率损耗已经不适用,在800 V时,它们被排除在选项之外(见图5)。硅MOSFET的反向耐压越高,其Rdson越高。在600v电压水平以上,这种特点对整体效率有巨大影响。此外,还必须考虑在更高电压下增加的冷却成本。
在4H衬底(极高载流子迁移率的四元矩阵)中使用SiC技术的Mosfet在开关过程中表现出比使用Si技术更高的效率。低Rdson的优势是SiC MOSFET半导体在800 V逆变器应用的主要原因。
较宽的带隙和较低的表面电阻上较高的击穿电压,允许以较高的压摆率切换高电压,以上这些都是SiC的材料优势。由于更低的Rdson,开关损耗较低,可以应用较高的开关频率,见图6。特别是在轻载时,低导通损耗有对工况效率意义巨大。
考虑到所有的限制条件,例如功率模块的连接接口,SiC技术可能实现功率模块体积减少25…50%。 SiC比Si具有更高的导热系数,这为热损耗的更好传导散热提供了可能。同时,SiC半导体可以在更高的温度下工作。以上这些这就提供了逆变器设计要求的高功率密度条件。
综合分析表明,SiC可以提高逆变器的效率,降低开关损耗,减少封装体积,减少冷却能力,提高工作温度,减少功率模块的重量。
与400V Si逆变器相比,400V SiC逆变器可以设计得更加紧凑。800V SiC逆变器需要更大的体积,因为爬电距离和电气间隙要求更大。
原则上,SiC技术的优势也可以与400V系统结合使用,但只有在逆变器中才能实现效率优势。额外的优势,如超高速充电需要更高的电压。为了研究SiC的优势,在整车上对一个400V SiC逆变器样机进行了测试。采用SiC技术的800V逆变器目前正处于测试阶段。
 3.2 SiC的压摆率(dv/dt)优势  
如图7所示,在SiC半导体中,通过增加压摆率dv/dt可以降低开关损耗。与硅相比,该技术具有更大的潜力,因为换相电路中较高的转频率和可调整的杂散电感降低了功率损耗。这就需要优化栅极源电路中的杂散电感。由于换相电路中极低的杂散电感的实现成本相对较高,因此在系统级上定义平衡的dv/dt是优化的一部分
在一定的dv/dt下模拟杂散电感。结合开关频率的增加,可以模拟一个WLTP周期的总功率损耗。在5…20kv /µs压摆率范围内,杂散电感处于较低水平时,对WLTP损耗是明显的。
3.3 电磁兼容性
众所周知,高频开关过程会引起电磁干扰。为了在牵引逆变器中应用碳化硅Mosfet,必须研究高开关频率和压摆率与高屏蔽和滤波效果之间的权衡。图8显示了开关频率加倍(10 kHz到20 kHz)对典型测量中的干扰频和干扰强度。在20kHz时,干扰强度增加约6dB。仅仅提高开关频率并不能得到最优解决方案。必须研究SiC的最优控制参数,这将使系统具有良好的电磁兼容性能条件下,在可能的开关频率下可接受的开关损耗得到最佳的效率增加。

04.
电机设计
800V应用的一体化高效电驱动的开发基础是大规模系列生产的EMR4电机系统。EMR4将比EMR3有更大的可扩展性,更多可能的子组件组合(作为800V逆变器选项)。此外,互连设计将更加标准化,互连的可扩展性也将提高。特别是在低功耗应用中,组装空间将会减少。与EMR4设计相比,通过改变互连设计,800V电机的线圈数量增加了一倍。
4.1采用碳化硅技术提高电机效率
 第3章的功率损耗分析表明,在相同的冷却能力下,SiC mosfet能够实现更快、更频繁的开关。较高的开关频率可以提高电机的效率。开关频率越高,谐波电流越小。因此,增加开关频率可以降低逆变器提供的谐波输入功率。
图9在功率流图中演示了前面一节中描述的方面。通常的功率流(灰色)从输入功率,通过气隙功率,到轴上的机械输出功率。定子和后来的转子的功率损失是通过散热传递的。红色表示的是完全转化为热量而不影响机械功率的谐波输入功率。采用碳化硅技术可以降低800V电机的谐波损耗。
4.2 800V电机的设计参数
众所周知,变频供电的电机比由恒定频率的正弦波供电的恒速运行的电机应力更大。图10显示了快速开关逆变器对电机造成的额外影响。800 V SiC技术的应用需要更仔细地观察电机的绝缘系统和轴电流。
虽然逆变器提供的上升时间很短的高频电压脉冲为高效系统创造了基础,但这些脉冲增加了对电机的压力。特别是在高输出功率时,可以观察到最高的压摆率。
系统设计的目标是在低谐波损耗和由于高开关频率和压摆率而增加的绝缘系统要求和电机的使用寿命之间找到适当的平衡。这两个方面的最佳平衡对碳化硅牵引系统的设计具有重要意义。
电机的绝缘系统必须承受过冲电压,这是由于800V的电压水平与高开关频率和dv/dt的结合而产生的。
这些系统的测试电压也会增加。电机和逆变器输出端子之间的电缆长度必须设计得尽可能短,以防止由于反射电压波而产生额外的电压过冲。
图 10 中的反射系数 r 和电机阻抗 Z 说明了这一方面的问题。通过选择最佳 dv/dt 以及最佳上升时间,应考虑临界电缆长度与上升时间直接相关。由于这种关系,电压上升时间不能按需要选择得那么高。这意味着要开发 EMR4 的 800 V平台,必须研究绝缘系统的行为和使用寿命。
高电压峰值会导致局部放电,因为峰值电压(例如导体和叠片之间的电压)可以达到在薄弱点破坏绝缘系统的水平(PDIV问题)。这会导致绝缘系统在短时间内发生故障。产生的电流会对绝缘系统产生永久应力。结果,系统升温并老化。
了解电压脉冲对使用寿命的影响很重要。相应的局部放电测量结果用于绝缘系统的设计。
此外,调速电机中存在在逆变器运行下引起高频轴承电流的问题。这些包括由电机轴末端电位差引起的循环电流(轴、轴承、定子、定子外壳、轴承、轴),以及电容性轴承电流(也称为 dv/dt 电流)和放电由于共模轴承电压 Ub 的时间变化而产生的放电(EDM) 电流。
当轴承润滑剂的润滑膜容量局部击穿时,EDM 电流在高振幅放电电流峰值时出现。在汽车领域,EDM 电流被认为与实际应用相关。共模轴承电压 Ub 与共模电压 U0 的比值——所谓的轴承电压比 (BVR)——可用于对预期 EDM 电流的初步估计。在不同工作点的轴承电压的高分辨率测量中,可以观察到特征电压峰值,表明相关的放电电流。可以根据轴承的使用寿命确定关键工作点。在确定潜在工作点后,对这些工作点的高比例进行连续测试,并评估轴承的使用寿命。
如图 10 所示,轴承电压Ub 通过电容分压器连接到共模电压 U0。它由寄生电容(绕组外壳 Cw,h,绕组转子 Cw,r 转子外壳 Cr,h)和轴承阻抗 Zb 组成。等效电路图显示了防止 EDM 电流的措施,例如使用轴接地、定子绕组头的静电屏蔽或使用控制方法将U0降至最低。

05.
系统分析
前面的章节展示了 SiC 技术在组件级别的影响和可能性。下一步是在成本和效率方面将优势整合到优化的牵引系统中,同时还要考虑 NVH 和 EMC问题。
5.1 在 WLTP 工况上转移单个特征点
为了根据扭矩-速度特性图中的测量值评估 WLTP 工况下的有效性,选择 WLTP 中累积最大的点作为测试的测量点。图 11 显示了 带有 EMR4 系统的 D级车驱动系统直方图值。定义了 35 个操作点,并在电机测试台上以不同的开关频率结合不同的压摆率进行测量。
5.2 测试结果的讨论
对测量结果的评估揭示了两个对 SiC 技术的进一步发展具有决定性意义的关键发现。对于基本测量,在逆变器中实施了高电压和低压摆率。在某些操作点,高压摆率对应于 10 kV/µs,低至 5 kV/µs。
图 12 显示了在中速范围内低扭矩的一个工作点上器件级别和系统级别的功率损耗差异。逆变器的功率损耗预计会随着开关频率的增加而增加,并且在测量精度内无法检测到 5kV/µs 和 10kV/µs 之间的差异。这是由于依赖于操作点的压摆率,它在低负载下的影响很小。另一方面,电机的功率损耗随着开关频率的增加而降低,但也会对 10 kV/µs 的更高电压转换率做出反应。这一优势补偿了由于更高的开关频率而导致的系统级更高的逆变器损耗。总的来说,它提高了系统效率。
在图 13 中可以观察到 10 kV/µs 对更高电流的逆变器级别的优势,因为整体逆变器损耗随着逆变器电流(分别是逆变器输出功率)的增加而增加。与低速下测得的性能相比,电机性能可能没有变化,但在高于 8 kHz 的更高开关频率下,在系统级仅观察到微小的改进。通过调整更高的压摆率,图 13 中观察到的优势应转移到特性曲线中的所有操作点。
5.3 WLTP 节能评估
测量值用于校准逆变器和电动机的仿真模型,以识别 WLTP 循环中的整体效率,并模拟未来的其他工况循环。为了初步表明 SiC 技术的效率潜力,系统级的测量损耗已转换为特性图。已经通过适当的插值方法建立了足够精确的网格,以表示驱动模拟中的整个循环。图 14 显示了作为示例的特征系统图,电压压摆率为 5 kV/µs,开关频率为 12 kHz。
图 15 显示了 D 级车辆在 WLTP 循环中的结果,限值介于 5 kV/µs(6 和 12 kHz)和 10 kV/µs(6 和 12 kHz)之间。WLTP 中 PWM 频率的增加导致电机效率的增加。此外,它证实了逆变器输出电压压摆率的增加会导致逆变器中 6 kHz 和 12 kHz 的电气损耗降低。
根据图 14 和 15,计算出的逆变器损耗减少值低于开发目标。因此,测得的工作点效率提高和随后映射到 WLTP 表明,通过减少碳化硅半导体的开关损耗,WLTP 可以实现显著优势。优化的下一步是增加频率和电压压摆率。
5.4 优化
从所进行的研究可以推断,通过在逆变器中使用碳化硅半导体,除了调制方法和开关频率变化等控制策略的经典参数外,还可以使用新参数来提高效率。 电压压摆率提供了除开关频率之外优化系统效率的可能性

06.
总结与展望
由于提高效率的巨大潜力,半导体材料碳化硅的使用面临着高压应用的突破。系统优化提供了实现逆变器和电机最大效率的解决方案。使用 D 级车的例子,通部分工作点的效率提升分析,映射到它们对 WLTP 有效性的影响,提升WLTP工况里程。
众所周知,碳化硅在开关状态下比采用硅 IGBT 的当前标准解决方案具有更高的电导率。在车辆层面,与 Si IGBT 相比,使用 SiC MOSFET 可将 800 V 电压水平的系统效率提高多达 3%。除了这一优势之外,碳化硅还可以显着提高逆变器输出的电压压摆率 > 20 kV/µs(理论上),这是当今的硅半导体解决方案所不能达到的指标。与 Si IGBT 相比,在相同开关频率下的逆变器可以进一步提高 2-4% 的效率。这已在某些操作点上得到验证。然而,WLTP 中最佳开关频率和电压压摆率的全部潜力的发挥需要进一步研究。
 通过增加开关频率,由于较低的谐波电流和较低动态损耗,电机得到了更高的效率。
开关频率的增加通常会导致逆变器中开关损耗的增加。使用碳化硅半导体的解决方案可以通过提高电压转换率来降低作为逆变器开关频率函数的整体开关损耗。这种效果可以积极地用于提高逆变器和电机系统的效率。
总体而言,电动机频率的增加导致效率进一步提高 1-2%。为了减少效率劣势,必须在 EMC 约束允许的情况下将电压压摆率调整为最高。通过使用 SiC 代替 Si 半导体,系统优化在 800 V 的电压水平下总共提高了 6 – 8% 的效率。
开关频率增加到 20 kHz,电压压摆率增加到 15 kV/µs 是开发过程的下一步。这并不代表碳化硅可以获得的最大可能值,但考虑到绝缘和 EMC 行为,这些参数在大规模批量生产中是可能的。
为了实现 SiC 技术的效率提升,除了压摆率和开关频率的工作点相关调整之外,还必须软件优化及算法优化进一步提升系统效率。

限于篇幅,已做删减,另文章首尾冠名广告正式招商,功率器件,SiC,GaN,数字电源,新能源厂家都可合作,有意者加微信号1768359031详谈。

说明:本文来源网络;文中观点仅供分享交流,不代表本公众号立场,转载请注明出处,如涉及版权等问题,请您告知,我们将及时处理。

Please clik the advertisement and exit

重点

如何下载《新能源汽车电子技术板块内高清PDF电子书


点击文章底部阅读原文,访问电力电子技术与新能源论坛(www.21micro-grid.com)下载!


或者转发所要文章到朋友圈不分组不屏蔽,然后截图发给小编(微信1413043922),小编审核后将文章发你!



推荐阅读:点击标题阅读

LLC_Calculator__Vector_Method_as_an_Application_of_the_Design

自己总结的电源板Layout的一些注意点

High_Frequency_Transformers_for_HighPower_Converters_Materials

华为电磁兼容性结构设计规范V2.0

Communication-less Coordinative Control of Paralleled Inverters

Soft Switching for SiC MOSFET Three-phase Power Conversion

Designing Compensators for Control of Switching Power Supplies

100KHZ 10KW Interleaved Boost Converter with full SiC MOSFET

华为-单板热设计培训教材


看完有收获?请分享给更多人


公告:

本公众号也有微信群,如有需要,备注加群,谢谢!加小编微信号(QQ号)1413043922,请注明研究方向或从事行业(比如光伏逆变器硬件)小编对电力电子技术与新能源及微电网的市场发展很看好,对其关键技术很感兴趣,如有技术问题,欢迎加小编微信,共同讨论。

更多精彩点下方“阅读原文”

      点亮“在看,小编工资涨1毛!

电力电子技术与新能源 电力电子技术,交直流微电网,光伏并网逆变器,储能逆变器,风电变流器(双馈,直驱),双向变流器PCS,新能源汽车,充电桩,车载电源,数字电源,双向DCDC,锂电池,超级电容,燃料电池,能量管理系统以及APF,SVG ,UPQC等
评论
  • 随着数字化的不断推进,LED显示屏行业对4K、8K等超高清画质的需求日益提升。与此同时,Mini及Micro LED技术的日益成熟,推动了间距小于1.2 Pitch的Mini、Micro LED显示屏的快速发展。这类显示屏不仅画质卓越,而且尺寸适中,通常在110至1000英寸之间,非常适合应用于电影院、监控中心、大型会议、以及电影拍摄等多种室内场景。鉴于室内LED显示屏与用户距离较近,因此对于噪音控制、体积小型化、冗余备份能力及电气安全性的要求尤为严格。为满足这一市场需求,开关电源技术推出了专为
    晶台光耦 2025-01-13 10:42 498浏览
  • 根据Global Info Research(环洋市场咨询)项目团队最新调研,预计2030年全球无人机电池和电源产值达到2834百万美元,2024-2030年期间年复合增长率CAGR为10.1%。 无人机电池是为无人机提供动力并使其飞行的关键。无人机使用的电池类型因无人机的大小和型号而异。一些常见的无人机电池类型包括锂聚合物(LiPo)电池、锂离子电池和镍氢(NiMH)电池。锂聚合物电池是最常用的无人机电池类型,因为其能量密度高、设计轻巧。这些电池以输出功率大、飞行时间长而著称。不过,它们需要
    GIRtina 2025-01-13 10:49 182浏览
  • 数字隔离芯片是现代电气工程师在进行电路设计时所必须考虑的一种电子元件,主要用于保护低压控制电路中敏感电子设备的稳定运行与操作人员的人身安全。其不仅能隔离两个或多个高低压回路之间的电气联系,还能防止漏电流、共模噪声与浪涌等干扰信号的传播,有效增强电路间信号传输的抗干扰能力,同时提升电子系统的电磁兼容性与通信稳定性。容耦隔离芯片的典型应用原理图值得一提的是,在电子电路中引入隔离措施会带来传输延迟、功耗增加、成本增加与尺寸增加等问题,而数字隔离芯片的目标就是尽可能消除这些不利影响,同时满足安全法规的要
    华普微HOPERF 2025-01-15 09:48 80浏览
  • 流量传感器是实现对燃气、废气、生活用水、污水、冷却液、石油等各种流体流量精准计量的关键手段。但随着工业自动化、数字化、智能化与低碳化进程的不断加速,采用传统机械式检测方式的流量传感器已不能满足当代流体计量行业对于测量精度、测量范围、使用寿命与维护成本等方面的精细需求。流量传感器的应用场景(部分)超声波流量传感器,是一种利用超声波技术测量流体流量的新型传感器,其主要通过发射超声波信号并接收反射回来的信号,根据超声波在流体中传播的时间、幅度或相位变化等参数,间接计算流体的流量,具有非侵入式测量、高精
    华普微HOPERF 2025-01-13 14:18 482浏览
  • ARMv8-A是ARM公司为满足新需求而重新设计的一个架构,是近20年来ARM架构变动最大的一次。以下是对ARMv8-A的详细介绍: 1. 背景介绍    ARM公司最初并未涉足PC市场,其产品主要针对功耗敏感的移动设备。     随着技术的发展和市场需求的变化,ARM开始扩展到企业设备、服务器等领域,这要求其架构能够支持更大的内存和更复杂的计算任务。 2. 架构特点    ARMv8-A引入了Execution State(执行状
    丙丁先生 2025-01-12 10:30 466浏览
  •   在信号处理过程中,由于信号的时域截断会导致频谱扩展泄露现象。那么导致频谱泄露发生的根本原因是什么?又该采取什么样的改善方法。本文以ADC性能指标的测试场景为例,探讨了对ADC的输出结果进行非周期截断所带来的影响及问题总结。 两个点   为了更好的分析或处理信号,实际应用时需要从频域而非时域的角度观察原信号。但物理意义上只能直接获取信号的时域信息,为了得到信号的频域信息需要利用傅里叶变换这个工具计算出原信号的频谱函数。但对于计算机来说实现这种计算需要面对两个问题: 1.
    TIAN301 2025-01-14 14:15 108浏览
  • PNT、GNSS、GPS均是卫星定位和导航相关领域中的常见缩写词,他们经常会被用到,且在很多情况下会被等同使用或替换使用。我们会把定位导航功能测试叫做PNT性能测试,也会叫做GNSS性能测试。我们会把定位导航终端叫做GNSS模块,也会叫做GPS模块。但是实际上他们之间是有一些重要的区别。伴随着技术发展与越发深入,我们有必要对这三个词汇做以清晰的区分。一、什么是GPS?GPS是Global Positioning System(全球定位系统)的缩写,它是美国建立的全球卫星定位导航系统,是GNSS概
    德思特测试测量 2025-01-13 15:42 491浏览
  • 随着通信技术的迅速发展,现代通信设备需要更高效、可靠且紧凑的解决方案来应对日益复杂的系统。中国自主研发和制造的国产接口芯片,正逐渐成为通信设备(从5G基站到工业通信模块)中的重要基石。这些芯片凭借卓越性能、成本效益及灵活性,满足了现代通信基础设施的多样化需求。 1. 接口芯片在通信设备中的关键作用接口芯片作为数据交互的桥梁,是通信设备中不可或缺的核心组件。它们在设备内的各种子系统之间实现无缝数据传输,支持高速数据交换、协议转换和信号调节等功能。无论是5G基站中的数据处理,还是物联网网关
    克里雅半导体科技 2025-01-10 16:20 444浏览
  • 01. 什么是过程能力分析?过程能力研究利用生产过程中初始一批产品的数据,预测制造过程是否能够稳定地生产符合规格的产品。可以把它想象成一种预测。通过历史数据的分析,推断未来是否可以依赖该工艺持续生产高质量产品。客户可能会要求将过程能力研究作为生产件批准程序 (PPAP) 的一部分。这是为了确保制造过程能够持续稳定地生产合格的产品。02. 基本概念在定义制造过程时,目标是确保生产的零件符合上下规格限 (USL 和 LSL)。过程能力衡量制造过程能多大程度上稳定地生产符合规格的产品。核心概念很简单:
    优思学院 2025-01-12 15:43 522浏览
  • 新年伊始,又到了对去年做总结,对今年做展望的时刻 不知道你在2024年初立的Flag都实现了吗? 2025年对自己又有什么新的期待呢? 2024年注定是不平凡的一年, 一年里我测评了50余块开发板, 写出了很多科普文章, 从一个小小的工作室成长为科工公司。 展望2025年, 中国香河英茂科工, 会继续深耕于,具身机器人、飞行器、物联网等方面的研发, 我觉得,要向未来学习未来, 未来是什么? 是掌握在孩子们生活中的发现,和精历, 把最好的技术带给孩子,
    丙丁先生 2025-01-11 11:35 457浏览
  • 食物浪费已成为全球亟待解决的严峻挑战,并对环境和经济造成了重大影响。最新统计数据显示,全球高达三分之一的粮食在生产过程中损失或被无谓浪费,这不仅导致了资源消耗,还加剧了温室气体排放,并带来了巨大经济损失。全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,艾迈斯欧司朗基于AS7341多光谱传感器开发的创新应用来解决食物浪费这一全球性难题。其多光谱传感解决方案为农业与食品行业带来深远变革,该技术通过精确判定最佳收获时机,提升质量控制水平,并在整个供应链中有效减少浪费。 在2024
    艾迈斯欧司朗 2025-01-14 18:45 64浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦