人工智能机器人实验室前景广阔

云脑智库 2022-02-20 00:00


来源 | 中国工程院院刊

智库 | 云脑智库(CloudBrain-TT)

云圈 | “云脑智库微信群”,请加微信:15881101905,备注您的研究方向

声明 | 本号聚焦相关知识分享,内容观点不代表本号立场,可追溯内容均注明来源,若存在版权等问题,请联系(15881101905,微信同号)删除,谢谢。

本文选自中国工程院院刊《Engineering》2021年第10期

作者:Sean O\\\\\\\\\\'Neill

来源:AI-Driven Robotic Laboratories Show Promise[J].Engineering,2021,7(10):1351-1353.


编者按

人工智能的基本目标是使机器具有人类或其他智慧生物才能拥有的能力,包括感知、行动(如机器人)以及支持任务完成的体系架构。国际商业机器公司(IBM)在2020 年8 月推出的RoboRXN 化学实验室,展现了将人工智能和实验室自动化结合起来的巨大潜力。


中国工程院院刊《Engineering》2021年第10期刊发《人工智能机器人实验室前景广阔》,报道了当前人工智能机器人实验室在化学工程领域取得的进展,介绍了构建人工智能机器人实验室的多种方法,并提出了人工智能驱动的机器人实验室今后发展面临的限制与挑战。



最近,在世界各地几个实验室开展的精心设计的原理验证实验让人们得以一瞥未来。在未来,由人工智能引导的高通量自动化实验室可能会强化新材料(如清洁能源技术材料)的发现过程。而在化学工程领域,利用人工智能来辅助合成规划和性能,为科学家提供了这样一种前景:他们只需要一个想法和一个互联网连接,就可在最先进的远程实验室里生成新分子。

 

2020 年8 月,国际商业机器公司(IBM)宣布推出RoboRXN 化学实验室,让人们看到了将人工智能和实验室自动化结合起来的潜力。该系统既可提供化学配方来生产目标有机分子,还可以通过市售的硬件,如IBM的演示器将这些分子自动合成。该演示器由位于瑞士Füllinsdorf 的Chemspeed Technologies 公司制造,是一种Flex自动合成工作站(图1)。


图1 IBM的RoboRXN化学实验室系统合成分子的实时照片。在图的左下方,可以看到自动合成工作站6 个反应室中的几个。右边带着蓝色瓶盖的是装有配料的广口瓶。来源:IBM RoboRXN for Chemistry,经许可


最好将RoboRXN 分为两部分进行考虑,即合成器硬件以及经化学合成实验程序训练的人工智能算法“大脑”,其中化学合成实验程序基于自然语言处理进行机器学习,从大约100 万项专利中提取有用程序。该处理过程甚至可以将用英语编写的非结构化实验程序转换为进行这些实验所需的结构化步骤,包括振荡、搅拌和加热等步骤。该系统的人工智能还可以预测复杂有机化学反应的结果。


重要的是,对于有兴趣设计和合成某些新的有机分子的科学家,该系统可以建议逆合成路线。换句话说,用户告诉它需要什么分子,系统就会提供生产这种分子的各种实用配方选择,主要提供用市售原料进行反应的配方。IBM 已经通过其云应用程序——RXN化学实验室将这一见解与人们无偿分享。位于瑞士苏黎世的IBM 欧洲研究中心的加速发现实验室(Accelerated Discovery at IBM ResearchEurope)的负责人Teodoro Laino 说道:“挑战在于,你能否通过收集过去200 年的所有知识,训练出能够预测分子合成的模型,同时将这些知识转化为可由商业自动化硬件执行的指令?”


RoboRXN 的原理验证实验表明,从本质上讲,这是可以做到的。首先,RoboRXN 将化学配方转换成机器可读的指令,然后由一个能合成所需分子的自动化实验室执行该指令。那么,现实生产中该如何应用这样的系统?Laino 说道:“对这种系统感兴趣的主要是制药领域,近年来,制药领域的化学品制造环节普遍外包。目前,越来越多的制药企业开始关注由自己来制造化学品。有了人工智能组件,科学家无需像以往那样必须花费几十年时间去开发某种化学品,自动化硬件的出现,使得各种流程的作业时间扩大到每天24 h。”


另一种实现人工智能机器人实验室的方法是实现研究和仪器的自动化。在2020 年3 月的一次论证报告中,英国利物浦大学的化学教授兼材料创新公司(Materials InnovationFactory)主任Andrew Cooper 领导的一个团队,利用德国奥格斯堡库卡公司(Kuka)生产的灵巧移动机器人,研究用水生产氢气的新型光催化剂(图2)。该机器人自主运行了8 d,完成了688 项实验,每项实验分批进行,分16 批次,测试了由10 种不同的化学溶液组成的混合物,其中包括一种催化剂、两种表面活性剂和三种染料。随后用气相色谱法对每项实验进行评价,以确定实验效能。Cooper 说道:“在这个自动化机器人之前,学生每天只能亲手做一项实验。虽然出于安全考虑,这个机器人运行较慢,但它就像终结者——它永远不会停下来。它一周工作7 d,一天工作24 h,一次做16项实验。”


图2 英国利物浦大学Cooper 小组实验室运行中的“自动化研究员”。库卡移动机器人(KUKA Mobile Robot)可在82 cm 范围内自如移动。该机器人通过结合激光扫描和触摸反馈确定自身的位置,从而进行精确定位。出于安全考虑,它移动缓慢,但与人相比,该机器人系统做实验的速度很快,因为它做实验是批量进行的,且“思考速度如闪电般快”,Andrew Cooper教授说道。来源:Andrew Cooper,经许可

 

Cooper 表示,能处理如此多的变量是机器学习的独特优势。因为这个实验的“研究空间”包含了近1 亿种可能的成分组合,该自动化系统采用贝叶斯优化算法来评估每个实验的结果(此处指实验中氢的产量),然后决定在下一批中试验哪些成分的混合物。当系统发现某种组合效果好时,它会尝试优化该组合,同时继续寻找“研究空间”中其他领域的成分。Cooper 说道:“对于人类来说,在优化的同时进行新的尝试是非常困难的。它的维数太高了,人类的大脑甚至无法将其概念化。”他表示,人类化学家倾向于一次测试一个变量,而这种人工智能方法恰恰相反,它一次就能改变所有变量,每批实验都对其机器学习模型进行改进。实验结果表明,光催化剂混合物的活性是初始配方的6 倍。


Cooper 表示,自动化研究的一大好处是,使提高实验室空间的处理能力变得更容易。“每个月我们都要增加一个新站点,以使我们的实验室空间变得更加复杂。目前我们正在研究X射线衍射。这项研究很重要,因为它可以帮助我们确定材料的结构——不仅仅是材料可以做什么,更重要的是材料是什么。”Cooper 400 m2的实验室现在有两个机器人,还有两个正在订购中,所有这些机器人都可以作为一个团队一起工作。


拿大不列颠哥伦比亚大学的研究人员也开发了一个由人工智能驱动的自动化材料科学平台,该平台旨在加速发现用于清洁能源技术的先进材料。该“自动驾驶”机器人平台名为Ada,无需人工监督即可生产和测试新型薄膜材料(图3)。在一项旨在最大化钙钛矿太阳能电池中常用的电子-空穴传输材料的载流子迁移率的实验中,Ada通过制备三种溶液(包括氧化剂和掺杂剂)的混合物来制备薄膜。该系统以掺杂剂的相对浓度和退火时间作为输入变量,将这些混合物沉积到玻璃基板上,然后对其进行退火。退火后,自动测量每个样品的电学和光学特性。每个实验周期需要20 min。试验结束后,该系统采用贝叶斯优化方法自行决定接下来要尝试的变量组合。Ada确定最佳钴浓度和退火时间用了35 个循环( 约12 h)。


图3 哥伦比亚大学的Ada 机器人实验室平台是一个“自动驾驶”系统。该系统旨在加速用于清洁能源技术的新型薄膜材料的研发。中间左侧的浅色柱子顶部有一个铰接式机械臂。它前面的黑色柱子是一个基板存放架,正中间右侧的浅色圆柱体是旋涂仪。来源:UBC,经许可


与Cooper 实验室中的机器人一样,Ada通过将人工智能与自动化结合起来,成功实现了在广阔的实验空间中快速导航。Ada 项目经理Amanda Brown 表示,Ada 背后的加拿大团队目前有6 个这样的平台,用于开展6 个不同项目,其中一个旨在开发二氧化碳电解槽,以提高直接从空气中捕获碳的效果。首席研究员兼不列颠哥伦比亚大学化学以及化学与生物工程学教授Curtis Berlinguette 说道:“这是一项集很多学科知识于一体的工作。我们的平台是由机电工程师、机械工程师、化学家、材料科学家、程序员和机器学习专家共同搭建的。”


尽管这项工作前景不可限量,但人工智能驱动的机器人实验室在导航方面仍然存在许多限制。美国马萨诸塞州剑桥市麻省理工学院的化学工程学助理教授兼药物发现与合成机器学习联盟(Machine Learning for Pharmaceutical Discovery and Synthesis Consortium,由麻省理工学院与13家生物制药和化学公司组成) 成员Connor Coley 说道:“总的来说,该领域的发展使得与更宏伟的目标所对应的更加困难的问题开始得到解决,但我感觉我们已经陷入这个概念验证阶段很长一段时间了。”Coley 表示,自动化需要应对一系列挑战。Coley 的工作包括将人工智能驱动的合成规划与机器人自动化结合起来,用以生产药用化合物。“如果你的实验规模不是很小,那么放热反应就是一个问题。作为一个团队,我们在机器人分配固体药剂方面的工作仍然相对较差。一些反应性固体粉末往往会结块,因此准确分配这些粉末并精确称出特定质量的粉末仍然是一个问题。”


在IBM的RoboRXN化学实验室中,该团队目前使用的硬件无法执行多步骤化学过程中经常需要的那种纯化。Laino 说道:“如果你想净化某个化学试剂,就必须把它从循环中取出以完成净化,然后重新启动自动化过程,这对整个化学合成的性能有很大影响。”


如果这些挑战以及许多其他挑战在未来几年可以得到解决,人工智能驱动的机器人实验室不仅可以提供高通量的化学和材料研究,还可以进行更具创新性的研究。Cooper说道:“我有时太过于强调利用人工智能驱动机器人进行研究的速度,这不是重点。我们的根本目标始终是着眼于我们根本无法看到的事物。因为自动化的增强率如此之大,所以我们应该大胆进行一些猜测。”


然而,基于远程访问和扩展的组合,Laino 对RoboRXN的未来的想象与其他人不同。“想象有一个大仓库,那里不是一个装满计算机的大数据中心,而是按照要求进行化学反应的机器人。突然,你看到了将这项技术应用在化学等领域的潜力。这场革命肯定需要一些时间,但这将极大地改变我们看待和研究化学的方式。”


注:本文内容呈现略有调整,若需可查看原文。


改编原文:

Sean O´Neill.AI-Driven Robotic Laboratories Show Promise[J].Engineering,2021,7(10):1351-1353.

- The End

版权声明:欢迎转发本号原创内容,转载和摘编需经本号授权并标注原作者和信息来源为云脑智库。本公众号目前所载内容为本公众号原创、网络转载或根据非密公开性信息资料编辑整理,相关内容仅供参考及学习交流使用。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请跟我们联系删除。我们致力于保护作者知识产权或作品版权,本公众号所载内容的知识产权或作品版权归原作者所有。本公众号拥有对此声明的最终解释权。

投稿/招聘/推广/合作/入群/赞助 请加微信:15881101905,备注关键词

“阅读是一种习惯,分享是一种美德,我们是一群专业、有态度的知识传播者.”

 阅读原文加入知识星球,发现更多精彩内容.

 分享💬 点赞👍 在看❤️@以“三连”行动支持优质内容! 

云脑智库 努力是一种生活态度,与年龄无关!专注搬运、分享、发表雷达、卫通、通信、化合物半导体等技术应用、行业调研、前沿技术探索!专注相控阵、太赫兹、微波光子、光学等前沿技术学习、分享
评论
  • 流量传感器是实现对燃气、废气、生活用水、污水、冷却液、石油等各种流体流量精准计量的关键手段。但随着工业自动化、数字化、智能化与低碳化进程的不断加速,采用传统机械式检测方式的流量传感器已不能满足当代流体计量行业对于测量精度、测量范围、使用寿命与维护成本等方面的精细需求。流量传感器的应用场景(部分)超声波流量传感器,是一种利用超声波技术测量流体流量的新型传感器,其主要通过发射超声波信号并接收反射回来的信号,根据超声波在流体中传播的时间、幅度或相位变化等参数,间接计算流体的流量,具有非侵入式测量、高精
    华普微HOPERF 2025-01-13 14:18 474浏览
  • PNT、GNSS、GPS均是卫星定位和导航相关领域中的常见缩写词,他们经常会被用到,且在很多情况下会被等同使用或替换使用。我们会把定位导航功能测试叫做PNT性能测试,也会叫做GNSS性能测试。我们会把定位导航终端叫做GNSS模块,也会叫做GPS模块。但是实际上他们之间是有一些重要的区别。伴随着技术发展与越发深入,我们有必要对这三个词汇做以清晰的区分。一、什么是GPS?GPS是Global Positioning System(全球定位系统)的缩写,它是美国建立的全球卫星定位导航系统,是GNSS概
    德思特测试测量 2025-01-13 15:42 478浏览
  • 随着数字化的不断推进,LED显示屏行业对4K、8K等超高清画质的需求日益提升。与此同时,Mini及Micro LED技术的日益成熟,推动了间距小于1.2 Pitch的Mini、Micro LED显示屏的快速发展。这类显示屏不仅画质卓越,而且尺寸适中,通常在110至1000英寸之间,非常适合应用于电影院、监控中心、大型会议、以及电影拍摄等多种室内场景。鉴于室内LED显示屏与用户距离较近,因此对于噪音控制、体积小型化、冗余备份能力及电气安全性的要求尤为严格。为满足这一市场需求,开关电源技术推出了专为
    晶台光耦 2025-01-13 10:42 492浏览
  •   在信号处理过程中,由于信号的时域截断会导致频谱扩展泄露现象。那么导致频谱泄露发生的根本原因是什么?又该采取什么样的改善方法。本文以ADC性能指标的测试场景为例,探讨了对ADC的输出结果进行非周期截断所带来的影响及问题总结。 两个点   为了更好的分析或处理信号,实际应用时需要从频域而非时域的角度观察原信号。但物理意义上只能直接获取信号的时域信息,为了得到信号的频域信息需要利用傅里叶变换这个工具计算出原信号的频谱函数。但对于计算机来说实现这种计算需要面对两个问题: 1.
    TIAN301 2025-01-14 14:15 103浏览
  • 根据Global Info Research(环洋市场咨询)项目团队最新调研,预计2030年全球无人机电池和电源产值达到2834百万美元,2024-2030年期间年复合增长率CAGR为10.1%。 无人机电池是为无人机提供动力并使其飞行的关键。无人机使用的电池类型因无人机的大小和型号而异。一些常见的无人机电池类型包括锂聚合物(LiPo)电池、锂离子电池和镍氢(NiMH)电池。锂聚合物电池是最常用的无人机电池类型,因为其能量密度高、设计轻巧。这些电池以输出功率大、飞行时间长而著称。不过,它们需要
    GIRtina 2025-01-13 10:49 173浏览
  • 食物浪费已成为全球亟待解决的严峻挑战,并对环境和经济造成了重大影响。最新统计数据显示,全球高达三分之一的粮食在生产过程中损失或被无谓浪费,这不仅导致了资源消耗,还加剧了温室气体排放,并带来了巨大经济损失。全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,艾迈斯欧司朗基于AS7341多光谱传感器开发的创新应用来解决食物浪费这一全球性难题。其多光谱传感解决方案为农业与食品行业带来深远变革,该技术通过精确判定最佳收获时机,提升质量控制水平,并在整个供应链中有效减少浪费。 在2024
    艾迈斯欧司朗 2025-01-14 18:45 31浏览
  • 电动汽车(EV)正在改变交通运输,为传统内燃机提供更清洁、更高效的替代方案。这种转变的核心是电力电子和能源管理方面的创新,而光耦合器在其中发挥着关键作用。这些不起眼的组件可实现可靠的通信、增强安全性并优化电动汽车系统的性能,使其成为正在进行的革命中不可或缺的一部分。光耦合器,也称为光隔离器,是一种使用光传输电信号的设备。通过隔离高压和低压电路,光耦合器可确保安全性、减少干扰并保持信号完整性。这些特性对于电动汽车至关重要,因为精确控制和安全性至关重要。 光耦合器在电动汽车中的作用1.电池
    腾恩科技-彭工 2025-01-10 16:14 75浏览
  • 01. 什么是过程能力分析?过程能力研究利用生产过程中初始一批产品的数据,预测制造过程是否能够稳定地生产符合规格的产品。可以把它想象成一种预测。通过历史数据的分析,推断未来是否可以依赖该工艺持续生产高质量产品。客户可能会要求将过程能力研究作为生产件批准程序 (PPAP) 的一部分。这是为了确保制造过程能够持续稳定地生产合格的产品。02. 基本概念在定义制造过程时,目标是确保生产的零件符合上下规格限 (USL 和 LSL)。过程能力衡量制造过程能多大程度上稳定地生产符合规格的产品。核心概念很简单:
    优思学院 2025-01-12 15:43 507浏览
  • 在不断发展的电子元件领域,继电器——作为切换电路的关键设备,正在经历前所未有的技术变革。固态继电器(SSR)和机械继电器之间的争论由来已久。然而,从未来发展的角度来看,固态继电器正逐渐占据上风。本文将从耐用性、速度和能效三个方面,全面剖析固态继电器为何更具优势,并探讨其在行业中的应用与发展趋势。1. 耐用性:经久耐用的设计机械继电器:机械继电器依靠物理触点完成电路切换。然而,随着时间的推移,这些触点因电弧、氧化和材料老化而逐渐磨损,导致其使用寿命有限。因此,它们更适合低频或对切换耐久性要求不高的
    腾恩科技-彭工 2025-01-10 16:15 97浏览
  • 随着全球向绿色能源转型的加速,对高效、可靠和环保元件的需求从未如此强烈。在这种背景下,国产固态继电器(SSR)在实现太阳能逆变器、风力涡轮机和储能系统等关键技术方面发挥着关键作用。本文探讨了绿色能源系统背景下中国固态继电器行业的前景,并强调了2025年的前景。 1.对绿色能源解决方案日益增长的需求绿色能源系统依靠先进的电源管理技术来最大限度地提高效率并最大限度地减少损失。固态继电器以其耐用性、快速开关速度和抗机械磨损而闻名,正日益成为传统机电继电器的首选。可再生能源(尤其是太阳能和风能
    克里雅半导体科技 2025-01-10 16:18 322浏览
  • ARMv8-A是ARM公司为满足新需求而重新设计的一个架构,是近20年来ARM架构变动最大的一次。以下是对ARMv8-A的详细介绍: 1. 背景介绍    ARM公司最初并未涉足PC市场,其产品主要针对功耗敏感的移动设备。     随着技术的发展和市场需求的变化,ARM开始扩展到企业设备、服务器等领域,这要求其架构能够支持更大的内存和更复杂的计算任务。 2. 架构特点    ARMv8-A引入了Execution State(执行状
    丙丁先生 2025-01-12 10:30 459浏览
  • 数字隔离芯片是现代电气工程师在进行电路设计时所必须考虑的一种电子元件,主要用于保护低压控制电路中敏感电子设备的稳定运行与操作人员的人身安全。其不仅能隔离两个或多个高低压回路之间的电气联系,还能防止漏电流、共模噪声与浪涌等干扰信号的传播,有效增强电路间信号传输的抗干扰能力,同时提升电子系统的电磁兼容性与通信稳定性。容耦隔离芯片的典型应用原理图值得一提的是,在电子电路中引入隔离措施会带来传输延迟、功耗增加、成本增加与尺寸增加等问题,而数字隔离芯片的目标就是尽可能消除这些不利影响,同时满足安全法规的要
    华普微HOPERF 2025-01-15 09:48 28浏览
  • 随着通信技术的迅速发展,现代通信设备需要更高效、可靠且紧凑的解决方案来应对日益复杂的系统。中国自主研发和制造的国产接口芯片,正逐渐成为通信设备(从5G基站到工业通信模块)中的重要基石。这些芯片凭借卓越性能、成本效益及灵活性,满足了现代通信基础设施的多样化需求。 1. 接口芯片在通信设备中的关键作用接口芯片作为数据交互的桥梁,是通信设备中不可或缺的核心组件。它们在设备内的各种子系统之间实现无缝数据传输,支持高速数据交换、协议转换和信号调节等功能。无论是5G基站中的数据处理,还是物联网网关
    克里雅半导体科技 2025-01-10 16:20 439浏览
  • 新年伊始,又到了对去年做总结,对今年做展望的时刻 不知道你在2024年初立的Flag都实现了吗? 2025年对自己又有什么新的期待呢? 2024年注定是不平凡的一年, 一年里我测评了50余块开发板, 写出了很多科普文章, 从一个小小的工作室成长为科工公司。 展望2025年, 中国香河英茂科工, 会继续深耕于,具身机器人、飞行器、物联网等方面的研发, 我觉得,要向未来学习未来, 未来是什么? 是掌握在孩子们生活中的发现,和精历, 把最好的技术带给孩子,
    丙丁先生 2025-01-11 11:35 449浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦