1. 5G 手机给射频前端带来巨大产业机遇!
射频前端,作为设备于外界通信的重要节点,在整个通信系统中产生的作用不言而喻。砷化镓器件应用于消费电子射频功放,是 3G/4G 通讯应用的主力,物联网将是其未来应用的蓝海;氮化镓器件则以高性能特点目前广泛应用于基站、雷达、电子战等军工领域,利润率高且战略位置显著,由于更加适用于 5G,氮化镓有望在 5G 市场迎来爆发,而砷化镓则是 5G 功放的另一种备选。
行业知名机构 Yole Développement (Yole)的射频设备与技术部技术与市场分析师 Cédric Malaquin 在早前的一份报告中表示,移动设备正在加速向 5G 过渡。
他进一步指出,与 2020 年相比,2021 年 5G 手机的数量将增加一倍以上。这个普及速度比 10 年前的 LTE 标准要快得多。伴随着 5G 的爆发,射频设备的需求空前增加。与此同时,手机厂商还需要对以前的无线电标准提供支持。
“因此,我们必须将数百个射频组件安装到手持式设备中。这现在正在影响中端和入门级手机,而不仅仅是旗舰。”Cédric Malaquin 强调。
在 Cédric Malaquin 看来,在手机中实施的 5G 功能侧重于提高下载速度并使上行链路更加稳健。此外,尽管这目前仅适用于旗舰产品,然而在毫米波频率上创建了一条全新的无线电路径,这也是射频前端厂商的机会。
Yole 同时在报告中强调,5G 的引入增加了手机以及 RF 的复杂性。在保持可接受的外形尺寸的同时使用分立元件构建 5G 手机是一项挑战,为此需要推动更多的集成。
“在这种需求下,射频前端市场领导者都推出了适应多种市场需求的灵活模块产品。除此之外,有些厂商还为旗舰产品定制了模块”,Yole 射频技术和相关市场分析师 Mohammed Tmimi 博士肯定地说。
根据 Yole 射频团队预估,与 4G 版本相比,5G 手机中的射频含量高出 5 至 8 美元,而毫米波版本则多出 10 美元。 因此,射频前端市场正在蓬勃发展。
为此 Yole 表示,到 2021 年底,射频前端市场规模应该达到 170 亿美元,高于 2020 年的 140 亿美元。但他们也表示,自此之后,RF 前端市场的增长应该会放缓。而后随着 5G 成为主流且竞争进一步加剧时,射频前端的 ASP 将受到影响。根据分析师预计,射频前端市场在 2019 年(5G 推出之年)和 2026 年之间的复合年增长率为 8.3%,届时射频前端市场规模将达到 210 亿美元。
射频性能优异的
化合物半导体
化合物半导体射频性能优异。硅单晶材料是制作普通集成电路芯片的主要原料,但受限于材料特性,很难适用于高频/高压/大电流芯片应用。
化合物半导体材料因其优良的器件特性广泛适用于射频器件。常见的化合物半导体包括三五族化合物半导体和四族化合物半导体。
其中,砷化镓( GaAs)和氮化镓( GaN)作为其中应用领域最广、产业化程度最高的三五族化合物材料,具有优良的射频性能,天然具备禁带宽度宽、截止频率高、功率密度大等特点, 作为射频功率器件的基础材料分别主宰主流民用和军用/高性能射频集成电路市场。
化合物半导体与普通 Si CMOS 半导体器性能比较
化合物半导体细分应用及说明
半导体材料共经历了三个发展阶段:
1. 第一阶段是以Si、Ge为代表的第一代半导体材料
2. 第二阶段是以GaAs、InP等化合物为代表的第二代半导体材料
3. 第三阶段是以GaN、Sic、ZnSe等宽禁带半导体材料为主的第三代半导体材料
射频前端产业链
日趋成熟
目前射频前端半导体产业由IDM模式主导。射频前端主要产品的市场均被几大国际巨头垄断。
随着5G到来,以高通为代表的Fabless厂商试图凭借基带技术切入射频前端领域;同时以华为为代表的设备商对于上游供应链的把控和“国产替代”需求也将重塑产业链格局,国内设计厂商有望迎来替代机遇。
射频前端产业链根据分工的不同可以分为芯片设计、晶圆制造和封装测试三个环节。而IDM(IntegratedDeviceManufacturing,垂直整合制造)模式是指垂直整合制造商独自完成集成电路设计、晶圆制造、封测的所有环节,因此该模式对技术和资金实力均有很高的要求,所以目前只有国际上成功的大型企业采纳IDM模式,如Skyworks、Qorvo、Murata、Broadcom等。
1987年台湾积体电路公司(TSMC)成立以前,集成电路产业只有IDM一种模式,此后,半导体产业的专业化分工成为一种趋势。
出现垂直分工模式的根本原因是半导体制造业的规模经济性。但是现今IDM厂商仍然占据主要地位,主要是因为IDM企业具有资源的内部整合优势、技术优势以及较高的利润率:
1.资源的内部整合优势
在IDM企业内部,从IC设计到完成IC制造所需的时间较短,主要的原因是不需要进行硅验证(SiliconProven),不存在工艺流程对接问题,所以新产品从开发到面市的时间较短。
而在垂直分工模式中,由于Fabless在开发新产品时,难以及时与Foundry的工艺流程对接,造成一个芯片从设计公司到代工企业的流片(晶圆光刻的工艺过程)完成往往需要6-9个月,延缓了产品的上市时间。
2.技术优势
大多数IDM都有自己的IP(IntellectualProperty,知识产权)开发部门,经过长期的研发与积累,企业技术储备比较充足,技术开发能力很强,具有技术领先优势。
3.较高的利润率
根据“微笑曲线”原理,最前端的产品设计、开发与最末端的品牌、营销具有最高的利润率,中间的制造、封装测试环节利润率较低。
▼行业模式示意图
目前射频前端行业仍然以IDM模式为主导。射频与功率器件集成度不高,设计变化不多,设计环节附加值较低,而且材料结构与工艺密切相关,而工艺又决定了产品最终的电学性能,材料、设计、制造与封测一体相关,这几个因素是射频器件竞争的主导性因素。所以全球成功的射频或功率器件公司,多数都采用IDM模式。
随着通信技术的不断发展,手机等移动终端对于射频前端的要求也越来越高。一方面,手机等终端需要的射频前端的数量在上升,射频前端在手机成本的比重也越加上升;另一方面,随着对便携性和轻薄化的要求越来越高,而需求的射频前端数量也在不断增长,这时射频前端厂商只能增加集成度以把整个射频系统的实际尺寸控制在合适的范围内。
目前,已经有一些厂商在研发把低噪声放大器和开关模组集成在一起的方案,例如Skyworks的SkyOne模组(集成了PA,开关,多路器在同一模组上)。未来随着通信技术和生产工艺的不断发展,我们可望看到集成度更高的射频前端。
▼集成了PA,开关,多路器在同一模组上的Skyworks的SkyOne射频前端模组
射频前端行业兼并收购不断,巨头不断扩大业务版图。越来越多的厂商也在纷纷加大在射频前端方面的投入,希望在未来的5G浪潮中分一杯羹。
例如联发科计划收购络达科技布局射频PA,紫光展讯整合锐迪科买入射频PA行业,而国际巨头Skyworks联手松下组建合资公司开发SAW滤波器,而巨头Qorvo则由主营滤波器的RFMD和主营射频PA的Triquint合并而成。
有很多特殊的半导体产品适用IDM而不是代工模式,例如模拟器件。模拟器件和数字器件不一样。数字器件的敏感度一般来说不那么高,它追求摩尔定律,要求线宽越来越小、功耗越来越少、成本越来越低,而单位面积上晶体管的数目要越来越多,它需要最先进的工艺和技术。
模拟器件则非常敏感,只要一个参数有变化,整体功能就会改变很多。譬如模拟器件里面的一个电容或电感的尺寸,稍微大一点或者小一点效果就会差很多。所以模拟器件更需要有一条专门为它服务的生产线。
混合信号、模拟和功率半导体器件都不需要使用7纳米、14纳米的工艺,它需要的是稳定性和可靠性,需要对它的工艺流程进行量身定做,因此很多模拟器件是没有代工工厂(Foundry)的,譬如5G通讯中用到的氮化镓(GaN),目前这种高功率芯片的大企业有Skyworks(思佳讯)、Qorvo、Sumitomo(住友)、Murata(村田)、NXP(恩智浦)、AVAGO(安华高)等,都是IDM公司。
射频前端产业目前是IDM模式最成功的领域。就在其它半导体芯片市场(如处理器、SoC等)Fabless模式占据大半江山的时候,在射频前端市场仍然是IDM独大,这是因为射频前端设计需要仔细结合器件制造工艺,有时候甚至会为了设计而调整工艺。
目前射频前端领域的巨头Skyworks,Qorvo等都有自己的生产线,随着未来5G时代对射频前端器件的要求越来越高,制造工艺越来越复杂,预计IDM模式仍然将在未来的射频前端行业占据主导地位。
“基带供应商切入射频前端市场+整机商把控供应链国产替代”,Fabless迎来发展机遇
IDM模式虽然有这么多的好处,但是IDM模式最大的局限就在于对市场的反应不够迅速。由于IDM企业的“质量”较大,所以“惯性”也大,因此对市场的反应速度会比较慢。
其次,半导体产业所需的投资十分巨大,沉没成本高。晶圆生产线投资较大,而且每年的运行保养、设备更新与新技术开发等成本占总投资的比例较高。这意味着除了少数实力强大的IDM厂商有能力扩张外,其他的厂商根本无力扩张,因此便催生出了Fabless模式。
在Fabless模式下,集成电路设计、晶圆制造、封测分别由专业化的公司分工完成,此模式中主要参与的企业类型有芯片设计厂商、晶圆制造商、外包封测企业。采用Fabless模式的公司处于产业链上游,技术密集程度高,芯片设计厂商在该种模式下起到龙头作用,统一协调芯片设计后的生产、封测与销售。
▼Fabless模式下产业链分工
同时,以华为为代表的设备商对于上游供应链的把控和“国产替代”需求也将重塑产业链格局,国内设计厂商有望迎来替代机遇,我们看好未来射频前端的国产替代逻辑。国内射频器件的生产厂商以Fabless为主,在代工厂工艺的挹注下,产业链将迎来加速国产替代的机遇。目前国内代表公司有海思半导体,卓胜微,VanChip,Ampleon,慧智微等。
2. 5G射频前端演进的方向 — “ 模组化 ”
射频前端的“模组化”究竟是什么, 它是怎么来的,又有什么挑战?
带着以上问题,本文对射频前端模组的发展过程做一个梳理,对射频前端产品模组化进程中的挑战和未来可能的演进做一个讨论。
01.
射频前端的模组化
是什么?
射频前端是指天线后,收发机之前的部分。射频前端主要有PA(功率放大器)、Switch(开关)、LNA(低噪声放大器)及Filter(滤波器)构成。
射频前端的模组化方案(Integrated Solution)与分立方案(Discrete Solution)相对应。发射通路中的模组化是指将PA与Switch及滤波器(或双工器)做集成,构成PAMiD等方案;接收通路的模组化是指将接收LNA和开关,与接收滤波器集成,构成L-FEM等方案。模组化方案与分立方案的区别如下图所示。
图:分立方案(a)与模组方案(b)实现的射频前端系统
根据模组内集成器件的不同,射频前端模组也有不同的名称。常见的模组名称及集成的器件如下表所示。
表:不同射频前端简写及集成子模块
在3G及4G的早期时代,手机需要覆盖的频段不多,射频前端一般采用分立方案。到了4G多频多模时代,手机需要众多器件才能满足全球频段的支持需求,射频前端也变的越来越复杂;同时,分立方案在一定程度上无法满足高集成度、高性能的需求,集成模组方案得到了规模化采用。目前,iPhone中已经全面采用模组化方案,根据拆机分析网站eWisetech的拆机分析,在2020年至2021年华为、小米、OPPO、vivo、荣耀等多个厂商发布的手机中,处于1500至2000人民币价位带的多款手机已采用模组化方案 [1]。
02.
5G射频前端模组的前世
2000-2009年:
先驱者的尝试,PAMiD萌芽的10年
射频前模组方案中,最具代表性的就是发射通路的PAMiD模组。PAMiD是PAModule integrated with Duplexer的缩写,早期也被称为PAD,是集成了PA、开关与滤波器的模组。
最早的PAMiD可追溯到2000年初,两家先驱型射频前端公司Triquint及Agilent看到集成模组化带来高集成、高性能及低成本优势,开始做集成模组化的尝试,两家公司均实现了开创性的工作。
Triquint是当时领先的CDMA射频前端供应商,在并购了滤波器厂商Sawtek后,Li, P., Souchuns, C.,和Henderson, G.于2001年左右开始模组化产品TQM71312的研发。2003年,Microwave Journal 报道了该产品的工作,指出模组化设计将带来高性能、高集成度、小尺寸及高易用性,取得了40%的平均电流降低 [2]。这是行业内第一个公开发布和报道的集成模组产品,在后续行业综述中,这项工作被引用为集成模组产品的开端。
图:(a)Triquint于2003推出的模组产品TQM71312
(b)Triquint对其模组产品的说明
在报道中,Triquint的集成模组产品系列命名是TritiumTM。功不唐捐,先驱者的付出并没有白费。苹果公司在2008年推出的首款支持3G的iPhone手机iPhone 3G中,首次采用了模组方案。而iPhone 3G中用于支持3G信号的射频前端就是Triquint TritiumTM III系列模组芯片[4]。Triquint2014年与RFMD公司合并成立Qorvo公司,Triquint在集成模组的优势,在Qorvo时代依然延续。
图:iPhone 3G所采用的Triquint PAMiD模组
值得一提的是,当年Triquint参与业界首款开创性集成模组的3名设计人员中,有2位今天依然活跃在业界一线,引领和推动着行业发展,对工程师来讲射频行业实在是一个事业常青的领域。
关注到PAMiD的另外一家公司是Agilent。Agilent是有悠久历史和传承的射频前端厂商,源于HP。Agilent于2001年开始实现FBAR滤波器的量产,到了2002年,实现了千万级出货 [5],将自己的射频PA产品与滤波器产品做整合变成了顺理成章的选择。AFEM-7731 是Agilent于2005年推出的CDMA PAD产品。与Triquint公司的TQM71312类似,AFEM-7731内部集成一路CDMA PA及一个双工器。得益于FBAR的低插损,Agilent表示AFEM-7731可以取得优秀的线性和效率性能 [6]。
图:Agilent于2005年推出的
CDMA集成模组产品AFEM-7731
或许是看到射频前端巨大的发展前景,2005年12月12日,Agilent的射频前端部分从Agilent独立出来,成立新公司Avago,成为当时最大的非上市独立半导体公司,并于2009年上市。2016年,Avago与Broadcom合并,新公司更名为Broadcom。
尽管Avago具有FBAR技术带来的滤波器性能优势,但在2000年初,它的射频功率放大器处于弱势,集成模组产品的进展并不尽如人意。直到2010年左右,基于新工艺和新功率合成架构的射频功率放大器获得性能优势,进而带动了集成模组产品的成功。2012年起,Avago在PAMiD的产品及之后的Broadcom公司的射频前端模组产品,被大量应用于iPhone系列手机中。
2010-2019:
国际厂商推动,模组方案主流化的10年
苹果的引领
2010年,苹果推出iPhone4手机,单款机型销量超过5,000万部,是当时最成功的iPhone手机。从2010年开始,苹果公司开始对智能手机的全面引领。在iPhone4手机中,依然采用Triquint TritiumTM系列PAMiD方案实现3G射频前端。
在2012年发布的首款支持4G的iPhone手机iPhone5中,iPhone采用了Triquint、Avago及Skyworks的模组化产品 [7]。苹果继续坚定的采用模组化方案。
图:iPhone5 (A1429型号)射频前端方案,
采用模组化方案进行设计
在这一时期射频前端供应商在模组化也进行了坚决的投入。为了实现模组化中模块的优势整合,一系列射频前端公司也进行了合并:
2014年,RFMD宣布与Triquint合并,成为Qorvo公司。
2014年,Skyworks与松下成立合资公司,2016年Skyworks将合资公司全资收入旗下。
2017年,高通宣布与TDK成立合资公司RF360,2019年高通将合资公司合资收入放下。
图:射频前端公司的整合
除了在苹果手机中使用的定制化射频前端模组方案,各个射频前端供应商开始将模组化产品推向公开市场。Skyworks在2014年推出SkyOne®方案,Qorvo也在2014年推出RF FusionTM方案。Skyworks在对SkyOne方案的介绍中指出:“SkyOne® 是首款将多频功率放大器及多掷开关同所有相关滤波、双工通信及控制功能整合在一个单一、超集成封装当中的半导体设备,所用空间还不到行业最先进技术的一半”[8]。
图:Skyworks与Qorvo向公开市场推出PAMiD方案
FEMiD:模组化的另外一种选择
虽然PAMiD模组化方案有诸多的性能优势,但其供应劣势也相对明显:厂商必须要同时掌握有源(PA及LNA,Switch)及无源(SAW、BAW或FBAR)等能力,才有办法设计出PAMiD模组。而同时掌握这些资源的厂商只有Skyworks、Qorvo、Broadcom及Qualcomm等少数具有完整资源的厂商。
于是,华为、三星等终端公司着手推动FEMiD(Front-end Module integrated with Duplexer)方案。FEMiD是将天线开关及滤波器整合为一个模组,交由滤波器公司提供;PA依然采用分立方案,由PA公司提供。这种方案有效的发挥了无源公司与有源公司的特长。华为、三星等终端也因此摆脱了对PAMiD厂商的绝对依赖。
图:PAMiD与FEMiD方案对比
(a)PAMiD方案 (b)FEMiD方案
2016年,PAMiD与FEMiD的主要供应商如下。Broadcom、Skyworks及Qorvo是主要的PAMiD供应商,村田和RF360是主要的FEMiD供应商[7]。
图:PAMiD与FEMiD主要供应商
03.
5G射频前端模组的今生
Phase6/7系列
PAMiD方案的归一
不过,与iPhone中模组化方案的绝对主流相比,早期公开市场的模组化方案推广并不顺利。原因是Skyworks与Qorvo各自定义,所推广的方案并不兼容,在技术上和供应上都给平台适配和客户使用造成困扰。
为了解决方案统一的问题,MTK平台、国内头部手机厂商及Skyworks/Qorvo射频前端厂商联合发起Phase6系列射频前端集成方案定义。在Phase6方案中,Low Band (包括2G) 与Mid/HighBand两颗PAMiD构成完整发射方案。
图:Phase6与Phase6L方案的定义
由于方案归一, 并且终端厂商、平台厂商及芯片厂商联合参与定义,Phase6系列方案自2016年推出后,得到华为、小米、OPPO及vivo等手机厂商认可。在对于性能及集成度有高要求的高端手机中得到使用,模组化方案得到了普及。5G到来之后,Phase6系列方案演进至Phase7/7L,依然维持PAMiD模组化定义。
2020至之后:
国产开始形成突破
随着2019年底运营商5G陆续商用,2020年5G元年正式开启。5G到来之后,手机终端需要支持更多的频段。并且5G定义了3GHz以上,6GHz以下的超高频(UHB,Ultra-High band)频段,对射频前端性能提出了更高要求。
经过两年的方案迭代,5G方案已基本收敛。主要分为Phase7系列方案及Phase5N两种方案。两种方案在Sub-6GHz UHB新频段部分方案相同,均为L-PAMiF集成模组方案;在Sub-3GHz频段分别为PAMiD模组方案和Phase5N分立方案。
图:5G手机射频前端方案
Sub-6GHz UHB频段L-PAMiF:国产已成熟商用
Sub-6GHz UHB频段为5G新增频段,频率高、功率大,且增加SRS切换等复杂功能,集成LNA、PA、滤波器、收发开关及SRS开关的L-PAMiF成为主流选择。
在Sub-6GHz UHB L-PAMiF产品中,国产厂商逐渐形成突破。2019年12月,在中国5G正式商用的2个月之后,n77/78/79双频L-PAMiF S55255-11量产,国产射频前端厂商首次与国际厂商同时同质推出产品。2021年,国内射频前端厂商陆续推出UHB L-PAMiF产品,在未来演进中,国产UHB L-PAMiF产品会越来越有竞争力。
Sub-3GHz频段:国产亟待突破
相比于Sub-6GHz,虽然Sub-3GHz模组频率更低、功率更低,不需要复杂的SRS开关等,但由于Sub-3GHz频段较多,需要集成的滤波器及双工器更多,并且是SAW、BAW及FBAR等声学滤波器,对滤波器资源的获取、多频段的系统设计能力提出了高的要求。
对于Sub-3GHz PAMiD/L-PAMiD模组产品设计,主要的挑战有:
1. 全模块子电路的设计和量产能力
需要射频前端厂商有模块内每个主要电路的成熟设计及产品化能力,如各频段的PA、LNA及开关等,并且各子模块无性能短板。
2. 强大的系统设计能力
全集成模组本身构成一个复杂的系统,涉及到发射与接收之间隔离、各频段之间的抑制及载波聚合的通路设计等等问题。射频前端不再是一个单独的功能模块,需要厂商有强大的系统分析与设计能力。
3. 小型化滤波器资源
小型化可集成的滤波器资源是模组设计的稀缺资源,目前在Sub-3GHz用到的主要是WLP(Wafer Level Package,晶圆级封装)或CSP(Chip Scale Package,芯片级封装)两种封装结构的滤波器。两种滤波器的比较如下图所示。WLP滤波器尺寸小、与模组内其他模块的设计中有优势,是未来模组内滤波器的发展方向。
图:WLP与CSP两种封装结构下的滤波器比较
以上能力的同时具备是设计Sub-3GHz 模组产品的必要条件,也是国内射频前端厂商面临的挑战。在国内厂商对以上挑战未完全实现突破的情况下,国内厂商在Sub-3GHz只能提供分立方案。目前Sub-3GHz集成与分立方案的比较如下:
图:Sub-3GHz典型的模组方案与分立方案比较
虽然有诸多问题和挑战,射频前端模组仍是国内射频前端厂商必须攻克的产品类别。
04.
文章结语
“模组化”是射频前端演进的重要方向,在这个过程中,滤波器厂商与模组厂商都面临巨大的挑战和机遇。
来源:慧智微电子
|推荐阅读|
© 滤波器 微信公众号