GPIO输入输出各种模式(推挽、开漏、准双向端口)详解

李肖遥 2022-02-15 08:00
    关注、星标公众号,直达精彩内容

来源面包板社区


概述


能将处理器的GPIO(General Purpose Input and Output)内部结构和各种模式彻底弄清楚的人并不多,最近在百度上搜索了大量关于这部分的资料,对于其中很多问题的说法并不统一。本文尽可能的将IO涉及到的所有问题罗列出来,对于有明确答案的问题解释清楚,对于还存在疑问的地方也将问题提出,供大家讨论。


概括地说,IO的功能模式大致可以分为输入、输出以及输入输出双向三大类。其中作为基本输入IO,相对比较简单,主要涉及的知识点就是高阻态;作为输出IO,相比于输入复杂一些,工作模式主要有开漏(Open Drain)模式和推挽(Push-Pull)模式,这一部分涉及的知识点比较多;对于输入输出IO,容易产生疑惑的地方是准双向和双向端口的区别。


下面就按照这样的顺序依次介绍各个模式的详细情况。


输入IO


这里所说的输入IO,指的是只作为输入,不具有输出功能。此时对于input引脚的要求就是高阻(高阻与三态是同一个概念)。基本输入电路的类型大致可以分为3类:基本输入IO电路、施密特触发输入电路以及弱上拉输入电路。


先从最基本的基本输入IO电路说起,其电路如图 1所示。


图 1


其中的缓冲器U1是具有控制输入端,且具有高阻抗特性的三态缓冲器。通俗地说就是这个缓冲器对外来说是高阻的,相当于在控制输入端不使能的情况下,物理引脚与内部总线之间是完全隔离的,完全不会影响内部电路。而控制输入端的作用就是可以发出读Pin状态的操作指令。其过程如图 2所示。


图 2


这种基本电路的一个缺点是在读取外部信号的跳变沿时会出现抖动,如下图所示。


图 3


于是施密特触发输入电路就是解决了上述这种抖动的问题,其经过施密特触发器后的信号如图 4所示。


图 4


对于输入电路还存在另外一个问题,就是当输入引脚悬空的时候,输入端检测到的电平是高还是低?当输入信号没有被驱动,即悬空(Floating)时,输入引脚上任何的噪声都会改变输入端检测到的电平,如图 5所示。


图 5


为了解决这个问题,可以在输入引脚处加一个弱上拉电阻,如图 6所示。


图 6


这样,当输入引脚悬空时,会被RP上拉到高电平,在内部总线上就有确定的状态了。

但是这种结构是有一定问题的。首先很明显的一点是,当输入引脚悬空时读到的是1,当输入引脚被高电平驱动时读到的也是1,只有当输入引脚被低电平驱动时读到的才是0。也就是对于读1采取的方式是"读取非零"的方式。


另一个问题是该电路对外呈现的不是高阻,某种意义上说也在向外输出,当外部驱动电路不同时可能出现错误的检测结果。例如外部驱动电路是如图 7所示的结构,该电路结构中通过K打到不同端可以输出高电平或者低电平。


图 7


如果将如图 7所示的电路输出低电平,连接到带有弱上拉电阻的输入引脚,其结构如下所示。


图 8


由欧姆定律知,测试点处的电平是,于是CPU测得的输入信号为高,而外部驱动电路希望输出的电平为低。这种错误的原因就在于这种结构的输入电路并不是真正的高阻,或者说这个输入IO其实也在输出,而且影响了外部输入电路。


这种情况的发生也说明了:信号前后两级传递,为什么需要输出阻抗小,输入阻抗大的原因。在这个例子中,外围驱动电路的输出阻抗很大,达到了100Kohm;而输入端的阻抗又不够大,只有10Kohm,于是就出现了问题。如果输入端的输入阻抗真正做到高阻(无穷大),如下所示,就不会出现问题。


图 9


上面提到的这个带弱上拉的输入电路,也就是在后续章节会提到的准双向端口的情况。


输出IO


IO输出电路最主要的两种模式分别是推挽输出(Push-Pull Output)和开漏输出(Open Drain Output)。


推挽输出(Push-Pull Output)

推挽输出的结构是由两个三极管或者MOS管受到互补信号的控制,两个管子始终保持一个处于截止,另一个处于导通的状态。如图 10所示。


图 10


推挽输出的最大特点是可以真正能真正的输出高电平和低电平,在两种电平下都具有驱动能力。


补充说明:所谓的驱动能力,就是指输出电流的能力。对于驱动大负载(即负载内阻越小,负载越大)时,例如IO输出为5V,驱动的负载内阻为10ohm,于是根据欧姆定律可以正常情况下负载上的电流为0.5A(推算出功率为2.5W)。显然一般的IO不可能有这么大的驱动能力,也就是没有办法输出这么大的电流。于是造成的结果就是输出电压会被拉下来,达不到标称的5V。


当然如果只是数字信号的传递,下一级的输入阻抗理论上最好是高阻,也就是只需要传电压,基本没有电流,也就没有功率,于是就不需要很大的驱动能力。

对于推挽输出,输出高、低电平时电流的流向如图 11所示。所以相比于后面介绍的开漏输出,输出高电平时的驱动能力强很多。


图 11


但推挽输出的一个缺点是,如果当两个推挽输出结构相连在一起,一个输出高电平,即上面的MOS导通,下面的MOS闭合时;同时另一个输出低电平,即上面的MOS闭合,下面的MOS导通时。电流会从第一个引脚的VCC通过上端MOS再经过第二个引脚的下端MOS直接流向GND。整个通路上电阻很小,会发生短路,进而可能造成端口的损害。这也是为什么推挽输出不能实现" 线与"的原因。


开漏输出(Open Drain Output)


常说的与推挽输出相对的就是开漏输出,对于开漏输出和推挽输出的区别最普遍的说法就是开漏输出无法真正输出高电平,即高电平时没有驱动能力,需要借助外部上拉电阻完成对外驱动。下面就从内部结构和原理上说明为什么开漏输出输出高电平时没有驱动能力,以及进一步比较与推挽输出的区别。


首先需要介绍一些开漏输出和开集输出。这两种输出的原理和特性基本是类似的,区别在于一个是使用MOS管,其中的"漏"指的就是MOS管的漏极;另一个使用三极管,其中的"集"指的就是MOS三极管的集电极。这两者其实都是和推挽输出相对应的输出模式,由于使用MOS管的情况较多,很多时候就用"开漏输出"这个词代替了开漏输出和开集输出。


介绍就先从开集输出开始,其原理电路结如图 12所示。


图 12


图 12左边的电路是开集(OC)输出最基本的电路,当输入为高电平时,NPN三极管导通,Output被拉到GND,输出为低电平;当输入为低电平时,NPN三极管闭合,Output相当于开路(输出高阻)。高电平时输出高阻(高阻、三态以及floating说的都是一个意思),此时对外没有任何的驱动能力。这就是开漏和开集输出最大的特点,如何利用该特点完成各种功能稍后介绍。这个电路虽然完成了开集输出的功能,但是会出现input为高,输出为低;input为低,输出为高的情况。


图 12右边的电路中多使用了一个三极管完成了"反相"。当输入为高电平时,第一个三极管导通,此时第二个三极管的输入端会被拉到GND,于是第二个三极管闭合,输出高阻;当输入为低电平时,第一个三极管闭合,此时第二个三极管的输入端会被上拉电阻拉到高电平,于是第二个三极管导通,输出被拉到GND。这样,这个电路的输入与输出是同相的了。


接下来介绍开漏输出的电路,如图 13所示。原理与开集输出基本相同,只是将三极管换成了MOS而已。


图 13


接着说说开漏、开集输出的特点以及应用,由于两者相似,后文中若无特殊说明,则用开漏表示开漏和开集输出电路。


1. 开漏输出最主要的特性就是高电平没有驱动能力,需要借助外部上拉电阻才能真正输出高电平,其电路如图 14所示。


图 14


当MOS管闭合时,开漏输出电路输出高电平,且连接着负载时,电流流向是从外部电源,流经上来电阻RPU,流进负载,最后进入GND。


1)开漏输出的这一特性一个明显的优势就是可以很方便的调节输出的电平,因为输出电平完全由上拉电阻连接的电源电平决定。所以在需要进行电平转换的地方,非常适合使用开漏输出。


2)开漏输出的这一特性另一个好处在于可以实现"线与"功能,所谓的"线与"指的是多个信号线直接连接在一起,只有当所有信号全部为高电平时,合在一起的总线为高电平;只要有任意一个或者多个信号为低电平,则总线为低电平。而推挽输出就不行,如果高电平和低电平连在一起,会出现电流倒灌,损坏器件。


推挽与开漏输出的区别


图 15


双向IO


很多处理器的引脚可以设置为双向端口,双向端口的要求就是既可以输出信号,又可以读回外部信号输入。要同时做到这两点从原理上来说有点困难,首先从处理器的开漏输出IO口的内部结构说起,如图 16所示。


图 16


该结构是在图 13的基础上,在三极管之前加入了一个FF,目的是用于控制输出信号的时间。比较常见的一个应用场合是多个IO作为一个总线时,需要总线上的各个引脚同时将数据输出。


对于开漏输出结构,会将FF的输出Q端连接会输入驱动缓冲器,这样的话执行读操作是读的并不是外部引脚的状态,而是自己输出的状态。


双向开漏IO


但是对图 16的结构稍作修改,如图 17所示时,该结构称为双向开漏IO的结构。所做的改动是将输入驱动缓冲器连接到了PIN上。


图 17


该结构输出为"1"时,T1断开,此时pin对外呈现高阻,作为输入引脚没有任何问题。但是如果该结构输出"0"时,T1导通,此时pin对外短路到地,即无论外部输入什么信号,U2读回的全部是低。所以对于这样的结构,如果需要作为输入引脚使用时,必须给U1输出"1"后才能读取外部引脚数据。


准双向开漏IO


很多文献中还提到了准双向端口,其实准双向端口就是图 17的结构中加了一个上拉电阻,如图 18所示。


图 18


这个结构与图 17相比有以下相同与不同之处:

1) 作为输入引脚使用时,也必须先向U1中写"1",以达到断开T1的目的。所以是否需要提前写"1"并不是双向IO与准双向IO的区别。两者做输入端口时都需要提前写"1"。


2) 双向端口作为输入时是真正的高阻态,而准双向IO作为输入端口时,输入阻抗不为高阻,于是有可能出现如本文图 8所示的问题。


3) 准双向端口读取输入状态,默认为高。也就是判断外部输入信号的方法是"非低则为高"。即该结构只能准确的识别外部的低电平,无法区分悬空和真正的高。于是只要读到的不是0,都认为外部为1。


推挽输出作为双向IO


如果双向端口中的输出部分采用的是推挽输出结构,那么作为输入时必须将上下两个管子全部端口才能成为高阻,作为输入。


51单片机的P0端口


在双向端口的讨论中,比较复杂的就是51单片机的P0端口了。这里就详细讨论一下51单片机的P0端口结构和工作原理。


P0端口的内部结构如图 19所示。


图 19


内部结构比较复杂,包括以下这些器件:


1) U1:与门。一个输入连着控制线,另一个输入连接这地址/数据信号。由于与门的特性,当控制线为1时,与门输出与地址/数据信号的电平保持一致;如果控制线为0,则输出恒为。于是控制信号线相当于与门的使能信号。


2) U2:反相器,输出信号为地址/数据信号的反相信号。


3) U3和U6都是具有控制输入端且具有高阻抗特性的三态缓冲器,作用是对于外部呈现高阻态。当控制端使能时可以将外部信号的电平读进数据总线。


4) U4:为锁存器,目的就是控制引脚输出信号的时间。


5) U5:模拟开关,可以控制V2的输入信号是来自锁存器U4的Q非输出还是来自于反相器U2的输出。


6) V1和V2分别是两个MOS管。


了解了各个独立器件之后就开始介绍工作在各个模式下的工作原理:

P0用于地址/数据线时:

在P0作为地址/数据线时,是地址、数据复用总线,P0需要输出地址,同时需要读回数据信号。


当P0需要输出地址信息时,U1的控制信号为0,模拟开关U5接到U2反相器的输出。于是当地址信号线传来的信号为1,与控制线"1"相与之后输出到V1的输入信号为"1",V1截止。地址信号"1"经反相之后,通过模拟开关输出到V2的输入端为"0",V2导通,于是情况如图 20所示,pin输出"0"。


图 20


当地址信号线传来的信号为1,与控制线"1"相与之后输出到V1的输入信号为"0",V1导通。地址信号"0"经反相之后,通过模拟开关输出到V2的输入端为"1",V2截止,于是情况如图 21所示,pin输出"1"。


图 21


于是在作为地址线输出时,V1、V2两个MOS管均使用了,是推挽输出。


当P0在输出低8位地址信息后,将变为数据总线,此时CPU的操作是控制端输出0,模拟开关打到锁存器的Q非端,且向锁存器中打入"1"。于是Q非输出为0,V2截止。同时控制线为0使得与门输出为0,V1截止。由于V1和V2都截止,所以此时pin对外完全呈现高阻,作为输入端口,外部数据通过U6进入内部总线,情况如图 22所示。(相当于将推挽输出的两个MOS管全部断开了)此时由于对外呈现高阻,所以是真正的输入引脚。这就解释了为什么说P0是真正的双线端口。


图 22


P0用于普通IO时:


在P0作为普通IO并作为输出时,控制信号为0,使V1始终处于截止状态。模拟开关连接到Q非输出,当作为输出时,锁存器的输入端直接输入0或者1,Q非将反相信号输入到V2的输入端。即当输出"0"时,V2输入端为"1",V2导通,pin输出"0";当输出"1"时,V2输入端为"0",V2截止,pin输出高阻的0。即当P0工作在普通IO模式下,输出为开漏输出,且内部没有上拉电阻。


在P0作为普通IO并作为输入时,控制信号为0,使V1始终处于截止状态。模拟开关连接到Q非输出,且CPU自动向锁存器输入端写1,则V2输入端为0,V2截止。与之前在作为地址/数据线,作为输入时一样,也是两个MOS管全部断开,pin直接连接到U6,对外呈现高阻。于是也是真正的输入引脚。


综上P0无论工作在哪种模式下都是真正的双端口IO。


51单片机的P1~P3端口


51单片机的其他三个端口的内部结构如图 23所示,与P0相比简单了很多,没有了顶部的MOS管,也没有了地址/数据信号的选项。作为输出时是带有上拉电阻的的开漏输出,作为输入时是有上拉电阻存在的,于是输入端口对外不是高阻。这就解释了为什么P1~P3只能是准双向端口。


图 23

 

  • 这种情况的发生也说明了:信号前后两级传递,为什么需要输出阻抗小,输入阻抗大的原因。在这个例子中,外围驱动电路的输出阻抗很大,达到了100Kohm;而输入端的阻抗又不够大,只有10Kohm,于是就出现了问题。如果输入端的输入阻抗真正做到高阻(无穷大),如下所示,就不会出现问题。哈哈。一开始认为作者这段话错了。仔细又思考下。作者应该是对的。信号传递确实需要发送信号的设备的输出阻抗小,接收设备的输入阻抗大。但在作者的论述中,所谓的"外围驱动电路"是作为发送信号的设备,而"单片机输入端"是作为接收信号的设备。所以需要外围的设备输出阻抗小(这个例子达到了100k,相比10k属于大了),单片机的输入阻抗又不够大(没有达到高阻抗,只有10k),于是出现了传输错误。我犯的错误是看到“外围设备”就认为是接收设备,看到“单片机的输入端”就认为是发送设备。

‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧  END  ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

关注我的微信公众号,回复“加群”按规则加入技术交流群。

关注程序员编程基地,回复“pdf”获取程序员必读经典书单,一起编程一起进阶。



点击“阅读原文”查看更多分享,欢迎点分享、收藏、点赞、在看。

李肖遥 公众号“技术让梦想更伟大”,作者:李肖遥,专注嵌入式,只推荐适合你的博文,干货,技术心得,与君共勉。
评论
  • 前言近年来,随着汽车工业的快速发展,尤其是新能源汽车与智能汽车领域的崛起,汽车安全标准和认证要求日益严格,应用范围愈加广泛。ISO 26262和ISO 21448作为两个重要的汽车安全标准,它们在“系统安全”中扮演的角色各自不同,但又有一定交集。在智能网联汽车的高级辅助驾驶系统(ADAS)应用中,理解这两个标准的区别及其相互关系,对于保障车辆的安全性至关重要。ISO 26262:汽车功能安全的基石如图2.1所示,ISO 26262对“功能安全”的定义解释为:不存在由于电子/电气系统失效引起的危害
    广电计量 2025-01-02 17:18 218浏览
  • 【工程师故事】+半年的经历依然忧伤,带着焦虑和绝望  对于一个企业来说,赚钱才是第一位的,对于一个人来说,赚钱也是第一位的。因为企业要活下去,因为个人也要活下去。企业打不了倒闭。个人还是要吃饭的。企业倒闭了,打不了从头再来。个人失业了,面对的不仅是房贷车贷和教育,还有找工作的焦虑。企业说,一个公司倒闭了,说明不了什么,这是正常的一个现象。个人说,一个中年男人失业了,面对的压力太大了,焦虑会摧毁你的一切。企业说,是个公司倒闭了,也不是什么大的问题,只不过是这些公司经营有问题吧。
    curton 2025-01-02 23:08 290浏览
  • 影像质量应用于多个不同领域,无论是在娱乐、医疗或工业应用中,高质量的影像都是决策的关键基础。清晰的影像不仅能提升观看体验,还能保证关键细节的准确传达,例如:在医学影像中,它对诊断结果有着直接的影响!不仅如此,影像质量还影响了:▶ 压缩技术▶ 存储需求▶ 传输效率随着技术进步,影像质量的标准不断提高,对于研究与开发领域,理解并提升影像质量已成为不可忽视的重要课题。在图像处理的过程中,硬件与软件除了各自扮演着不可或缺的基础角色,有效地协作能够确保图像处理过程既高效又具有优异的质量。软硬件各扮演了什么
    百佳泰测试实验室 2025-01-03 10:39 137浏览
  • Matter加持:新世代串流装置如何改变智能家居体验?随着现在智能家庭快速成长,串流装置(Streaming Device,以下简称Streaming Device)除了提供更卓越的影音体验,越来越多厂商开始推出支持Matter标准的串流产品,使其能作为智能家庭中枢,连结多种智能家电。消费者可以透过Matter的功能执行多样化功能,例如:开关灯、控制窗帘、对讲机开门,以及操作所有支持Matter的智能家电。此外,再搭配语音遥控器与语音助理,打造出一个更加智能、便捷的居家生活。支持Matter协议
    百佳泰测试实验室 2025-01-03 10:29 143浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 161浏览
  • 本文继续介绍Linux系统查看硬件配置及常用调试命令,方便开发者快速了解开发板硬件信息及进行相关调试。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。查看系统版本信息查看操作系统版本信息root@ido:/# cat /etc/*releaseDISTRIB_ID=UbuntuDISTRIB_RELEASE=20.04DISTRIB_CODENAME=focalDIS
    Industio_触觉智能 2025-01-03 11:37 138浏览
  • 车身域是指负责管理和控制汽车车身相关功能的一个功能域,在汽车域控系统中起着至关重要的作用。它涵盖了车门、车窗、车灯、雨刮器等各种与车身相关的功能模块。与汽车电子电气架构升级相一致,车身域发展亦可以划分为三个阶段,功能集成愈加丰富:第一阶段为分布式架构:对应BCM车身控制模块,包含灯光、雨刮、门窗等传统车身控制功能。第二阶段为域集中架构:对应BDC/CEM域控制器,在BCM基础上集成网关、PEPS等。第三阶段为SOA理念下的中央集中架构:VIU/ZCU区域控制器,在BDC/CEM基础上集成VCU、
    北汇信息 2025-01-03 16:01 173浏览
  • 在测试XTS时会遇到修改产品属性、SElinux权限、等一些内容,修改源码再编译很费时。今天为大家介绍一个便捷的方法,让OpenHarmony通过挂载镜像来修改镜像内容!触觉智能Purple Pi OH鸿蒙开发板演示。搭载了瑞芯微RK3566四核处理器,树莓派卡片电脑设计,支持开源鸿蒙OpenHarmony3.2-5.0系统,适合鸿蒙开发入门学习。挂载镜像首先,将要修改内容的镜像传入虚拟机当中,并创建一个要挂载镜像的文件夹,如下图:之后通过挂载命令将system.img镜像挂载到sys
    Industio_触觉智能 2025-01-03 11:39 113浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 155浏览
  • 在快速发展的能源领域,发电厂是发电的支柱,效率和安全性至关重要。在这种背景下,国产数字隔离器已成为现代化和优化发电厂运营的重要组成部分。本文探讨了这些设备在提高性能方面的重要性,同时展示了中国在生产可靠且具有成本效益的数字隔离器方面的进步。什么是数字隔离器?数字隔离器充当屏障,在电气上将系统的不同部分隔离开来,同时允许无缝数据传输。在发电厂中,它们保护敏感的控制电路免受高压尖峰的影响,确保准确的信号处理,并在恶劣条件下保持系统完整性。中国国产数字隔离器经历了重大创新,在许多方面达到甚至超过了全球
    克里雅半导体科技 2025-01-03 16:10 121浏览
  • 国际标准IPC 标准:IPC-A-600:规定了印刷电路板制造过程中的质量要求和验收标准,涵盖材料、外观、尺寸、焊接、表面处理等方面。IPC-2221/2222:IPC-2221 提供了用于设计印刷电路板的一般原则和要求,IPC-2222 则针对高可靠性电子产品的设计提供了进一步的指导。IPC-6012:详细定义了刚性基板和柔性基板的要求,包括材料、工艺、尺寸、层次结构、特征等。IPC-4101:定义了印刷电路板的基板材料的物理和电气特性。IPC-7351:提供了元件封装的设计规范,包括封装尺寸
    Jeffreyzhang123 2025-01-02 16:50 198浏览
  • 物联网(IoT)的快速发展彻底改变了从智能家居到工业自动化等各个行业。由于物联网系统需要高效、可靠且紧凑的组件来处理众多传感器、执行器和通信设备,国产固态继电器(SSR)已成为满足中国这些需求的关键解决方案。本文探讨了国产SSR如何满足物联网应用的需求,重点介绍了它们的优势、技术能力以及在现实场景中的应用。了解物联网中的固态继电器固态继电器是一种电子开关设备,它使用半导体而不是机械触点来控制负载。与传统的机械继电器不同,固态继电器具有以下优势:快速切换:确保精确快速的响应,这对于实时物联网系统至
    克里雅半导体科技 2025-01-03 16:11 164浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦