FinFET即将谢幕?

原创 半导体产业纵横 2022-02-14 18:07


 

自2012年出现以来,FinFET接近超期服役。在继续追求摩尔定律的道路上,FinFET渐渐显示出疲态。

 

3nm制程以下,需要研究新的晶体管结构。有几家半导体巨头早已着手开发基于下一代更小制程的新工艺,在本篇文章中,ICViews展望了未来可能使用的新结构。虽然目前还不确定未来主流会是什么,但这几个新方式都极具创新性。


FinFET即将谢幕

 

FET的全名是场效电晶体(FET:Field Effect Transistor),大家最熟悉的莫过于MOSFET。MOSFET是目前半导体产业最常使用的一种场效电晶体(FET),科学家将它制作在硅晶圆上,是数字讯号的最小单位,一个MOSFET代表一个0或一个1,就是电脑里的一个位元(bit)。

 

但自MOSFET结构发明以来,到现在已经使用超过四十年,当闸极长度缩小到20纳米以下的时候,遇到了许多问题,其中最麻烦的莫过于闸极长度越小,源极和漏极的距离越近,闸极下方的氧化物也就越薄,从而产生漏电。

 

因此美国加州大学伯克利分校胡正明、Tsu-Jae King-Liu、Jeffrey Bokor等三位教授发明了鳍式场效电晶体(FinFET:Fin Field Effect Transistor),把原本2D构造的MOSFET 改为3D的FinFET,因为构造很像鱼鳍,因此称为鳍式(Fin)。


 

英特尔自2012年在22纳米在芯片上,引入FinFET之后,全球半导体的都在此基础上研发。FinFET是将摩尔定律一直延伸到5nm的最有前途的器件技术。

 

它为平面CMOS缩小到20 nm时困扰的亚阈值泄漏、短沟道静电性能差和器件参数可变性高的问题提供了出色的解决方案。此外,它在低得多的电源电压下运行的能力扩展了电压缩放,这正在趋于平稳,并允许进一步节省急需的静态和动态功耗。

 

约略估计电晶体技术节点(Technology Node)与闸极长度(Gate Length)

 

然而,当先进制程再微缩至3nm时,FinFET会产生电流控制漏电的物理极限问题。


高层数通道堆叠的GAA

 

当摩尔定律逼近极限时,不同巨头探索不同的前进方向。对于2nm技术节点的晶体结构,台积电在2021 ISSCC国际会议上展示了三层堆叠的stacked nanosheets,可以提供更佳的性能和更低的次临界摆幅。

 

英特尔宣布将在2024年将以Ribbon FET(垂直堆叠四层的nanoribbons,与satcked nanosheets结构相似)作为20A技术节点的结构。

 

可以看出,高层数通道的GAA晶体结构可能成为未来主流。

                                            

法国半导体研究机构CEA-Leti 发表的

七层垂直堆叠硅通道电晶体



显示了纳米片结构从双堆叠结构到优化到单堆叠结构的演变

 

我们来看GAA本征电学性能,纳米片宽度比较小时(5nm),实际相当于纳米线,限制了能够通过的电流,性能会下降;而随着宽度的增大,能通过的有效电流增加,同时寄生电容也增加,但是电流增大速度高于电容,性能增加,并逐渐趋于饱和。

 

从AC特性上来看,当有源区宽度一定的情况下,纳米片的有效电流高于FinFET和纳米线,而寄生电容偏小,从而使纳米片器件速度高于FinFET和纳米线。同时,在相同的投影面积下,纳米片的有效宽度大于FinFET和纳米线,更有能力驱动电容性负载。

 

GAA NS宽度和器件频率的关系

 

因此,GAA结构的静电学性能要优于FinFET。

 

实际上,任何新的晶体管技术都具有挑战性。根据上海微电子学院的分析,影响GAA关键的技术工艺包括沟道形成工艺、内侧墙工艺、底部寄生沟道、源漏寄生电阻/电源以及沟道应力设计。

 

2009年法国CEA-LETI研究所第一次演示了内侧墙工艺集成技术,结果显示该技术可以提供30%~40%的寄生电容减少,并且不会带来开关比损失。但该技术难点主要在于高选择比Si Ge的各向同性刻蚀,介质回刻技术,复杂条件下的选择性源漏外延技术等。


内侧墙结构示意图。来源:《3nm以下节点堆叠环栅器件关键技术的考虑》

 

英特尔的Ribbon FET技术

 

我们来看看英特尔的Ribbon FET技术。

 

Ribbon FET技术是英特尔官方宣布的一种新晶体管技术。FinFET的想法是尽量用栅极围绕通道,但因为通道材料是底层半导体衬底的一部分,所以却无法让通道完全分离。

 

但是,Ribbon FET器件将通道从基地材料上抬高,形成一块栅极材料的通道线。由于通道线的形状像带状,因此被称为Ribbon FET,栅极完全围绕通道。这种独特的设计显著提高了晶体管的静电特性,并减小了相同节点技术的晶体管尺寸。

 

来源:Intel Accelerated

 

Ribbon FET提供高度灵活的通道,可适应更多功率密集型应用。环绕栅极的FET架构允许更高的驱动电流控制,这在传统的硅MOSFET中是不存在的。

 

VTFET

 

在2021年底,三星和IBM公布了VTFET(垂直传输场效应晶体管)。

 

新的垂直传输场效应电晶体(VTFET)设计旨在取代FinFET技术,其能够让芯片上的电晶体分布更加密集。这样的布局将让电流在电晶体堆叠中上下流动。

 

图像显示了电流如何流过传统晶体管(左)和新的VTFET设计(右)之间的差异。来源:IBM

 

相较传统将电晶体以水平放置,垂直传输场效应电晶体将能增加电晶体数量堆叠密度,并让运算速度提升两倍,同时借电流垂直流通,使电力损耗在相同性能发挥下降低85%。

 

此前,IBM宣布了2 纳米芯片技术的突破,这将使芯片能够在指甲大小的空间中容纳多达500亿个晶体管。VTFET创新专注于一个全新的维度,它为摩尔定律的延续提供了途径。

 

Forksheet FET 新潮流


实际上,在3nm节点以下,首选器件架构可能会再次变化,从纳米片变为堆叠叉片架构。IMEC则偏向Forksheet。

 

在2019年国际电子设备制造大会上,IMEC介绍了其叉板晶体管概念,IMEC的研究人员使用他们的2nm技术节点量化了叉板结构的功率性能优势。

 

这种新的FET为一堆纳米片晶体管添加了一个自对准的栅极端电介质壁。总体而言,介电壁在NMOS和PMOS纳米片晶体管之间提供了隔离,允许在XY维度上更积极地封装晶体管。

 

通过将晶体管靠得更近,设计人员可以提高开关速度并降低功耗。


半导体行业晶体管的演变。来源:IMEC

 

与纳米片器件相比,它们在恒定功率下表现出10%的速度优势和在恒定速度下降低24%的功率。这种性能增益是通过减小电容和增加薄片宽度以改善电流的能力来实现的。

 

2021年6月,IMEC在VLSI技术和电路研讨会 (VLSI 2021) 上首次提供了功能叉板FET的电气演示。22 nm NMOS和PMOS晶体管仅相隔17 nm,但具有不同的功函数金属栅极。

 

以上,是关于晶体管未来可能使用的新结构。

 

当我们走在3nm的以下制程的路口,每个阶段都会出现不同的探索。不论是MOSFET、FinFET或者是GAA。一个时代需要一个时代的英雄,谢幕不意味着落后,只是代表这个时代已经过去。

 

我们还在探索延续摩尔定律的路径,在制程小数点之后的时代,究竟哪个技术将成为真正的主角,我们拭目以待。 






半导体产业纵横 (微信号: ICViews)半导体产业纵横是神州数码数智创新+平台下的自媒体账号,立足产业视角,提供及时、专业、深度的前沿洞见、技术速递、趋势解析,赋能中国半导体产业,我们一直在路上。
评论
  • “金字招牌”的户外叙事。2024年的夏天似乎异常炙热,体育迷们的心跳也随之澎湃,全球瞩目的体育盛宴——巴黎奥运会在此刻上映。在这个充满荣耀与梦想的夏天,我们见证了无数激动人心的瞬间:男子4X100米混合泳接力决赛中,潘展乐的最后一棒,气壮山河,中国队的历史性夺冠,让整个泳池沸腾;射击10米气步枪混合团体决赛,黄雨婷和盛李豪的精准射击,为中国队射落首金,展现了年轻一代的力量;乒乓球男单四分之一比赛中,樊振东的惊天逆转令人难以忘怀,凭借坚韧不拔的意志和卓越的技术,成功挺进半决赛,并最终夺冠……在这一
    艾迈斯欧司朗 2024-12-25 19:30 56浏览
  • 引言  LIN(Local Interconnect Network)是一种针对汽车电子系统应用的串行通信协议,主要用于汽车电子控制单元(ECU)之间的通信。LIN总线的特点是成本低、速率低、通信距离短、连接节点少,主要用于对带块要求低、实时性要求不高的控制任务,例如车门控制、天窗控制、座椅控制、车内照明等功能。LIN总线采用的是主从式架构,由主节点基于调度表调度网络中的通信。  LIN总线的错误类型  尽管LIN协议设计简单,具有低带
    北汇信息 2024-12-25 14:18 48浏览
  • 今年AI技术的话题不断,随着相关应用服务的陆续推出,AI的趋势已经是一个明确的趋势及方向,这也连带使得AI服务器的出货量开始加速成长。AI服务器因为有着极高的运算效能,伴随而来的即是大量的热能产生,因此散热效能便成为一个格外重要的议题。其实不只AI服务器有着散热的问题,随着Intel及AMD 的CPU规格也不断地在提升,非AI应用的服务器的散热问题也是不容小觑的潜在问题。即便如此,由于目前的液冷技术仍有许多待克服的地方,例如像是建置成本昂贵,机壳、轨道、水路、数据中心等项目都得重新设计来过,维修
    百佳泰测试实验室 2024-12-26 16:33 43浏览
  • 在谐振器(无源晶振)S&A250B测试软件中,DLD1到DLD7主要用于分析晶体在不同驱动功率下的阻抗变化。此外,还有其他DLD参数用于反映晶振的磁滞现象,以及其频率和功率特性。这些参数可以帮助工程师全面了解KOAN晶振在不同功率条件下的动态特性,从而优化其应用和性能。磁滞现象晶振的磁滞现象(Hysteresis)是指在驱动功率变化时,晶体的阻抗或频率无法立即恢复至初始状态,而表现出滞后效应。1. DLDH: Hysteresis Ratio (MaxR/MinR)在不同驱动
    koan-xtal 2024-12-26 12:41 54浏览
  • 本文介绍瑞芯微RK3588主板/开发板Android12系统下,APK签名文件生成方法。触觉智能EVB3588开发板演示,搭载了瑞芯微RK3588芯片,该开发板是核心板加底板设计,音视频接口、通信接口等各类接口一应俱全,可帮助企业提高产品开发效率,缩短上市时间,降低成本和设计风险。工具准备下载Keytool-ImportKeyPair工具在源码:build/target/product/security/系统初始签名文件目录中,将以下三个文件拷贝出来:platform.pem;platform.
    Industio_触觉智能 2024-12-26 09:19 82浏览
  • 本文介绍瑞芯微开发板/主板Android系统APK签名文件使用方法,触觉智能EVB3588开发板演示,搭载了瑞芯微RK3588芯片,各类接口一应俱全,帮助企业提高产品开发效率,缩短上市时间,降低成本和设计风险。系统签名文件生成APK系统签名文件,具体可参考此文章方法RK3588主板/开发板Android12系统APK签名文件生成方法,干货满满使用方法第一步,修改APK工程文件app/src/build.gradle,并添加以下内容: android {     na
    Industio_触觉智能 2024-12-26 09:20 58浏览
  • 据IDTechEx最新预计,到2034年,全球汽车舱内传感(In-Cabin Sensing,ICS)市场将超过85亿美元。若按照增长幅度来看,包含驾驶员监控系统(DMS)、乘员监控系统(OMS)、手势控制和生命体征监测等高级功能在内的舱内传感市场预计2020年到2034年将增长11倍。感光百科:ICS中的光源选择01、政策推动带来的“硬”增长作为其中的增长主力,舱内监控系统应用(包含DMS和OMS等)被推动增长的首要因素正是法规。据统计,中国、欧盟、美国、韩国、印度等主要汽车国家或地区已推出相
    艾迈斯欧司朗 2024-12-25 19:56 56浏览
  • 概述 Intel 要求用户为其10代FPGA器件使用特定的上电和掉电顺序,这就要求用户在进行FPGA硬件设计的时候必须选择恰当的FPGA供电方案,并合理控制完整的供电上电顺序。经过在Cyclone 10 GX测试板上实际验证,统一上电确实会导致FPGA无法正常工作,具体表现为JTAG接口无法探测或识别到目标器件。上电顺序要求 Cyclone 10 GX,Arria 10以及Stratix 10系列器件所有的电源轨被划分成了三个组合,三组电源轨要求依次上电,如图1所示,为三组电源轨上电顺序示意图。
    coyoo 2024-12-25 14:13 41浏览
  • 新能源汽车市场潮起潮落,只有潮水退去,才能看清谁在裸泳。十年前,一批新能源汽车新势力带着创新的理念和先进的技术,如雨后春笋般涌入中国汽车市场,掀起一场新旧势力的角逐。经历市场的激烈洗礼与投资泡沫的挤压,蔚来、理想、小鹏等新势力车企脱颖而出,刷爆网络。不曾想,今年新势力车企杀出一匹“超级黑马”,爬上新势力车企销量榜前三,将蔚来、小鹏等昔日强者甩在了身后,它就是零跑汽车。公开数据显示,11月份,零跑汽车实现新车交付量约4.02万辆,同比增长117%,单月销量首次突破4万辆;小鹏汽车当月共交付新车约3
    刘旷 2024-12-26 10:53 94浏览
  • 全球照明技术创新领航者艾迈斯欧司朗,于2024年广州国际照明展览会同期,举办【智慧之光】· 艾迈斯欧司朗-照明应用研讨会,以持续的技术创新,推动光+概念的全面落地。现场还演示了多款领先照明技术,且由资深工程师倾情解读,另有行业大咖深度洞察分享,助你开启“光的无限可能”探索之旅!精彩大咖分享引领未来照明无限遐想艾迈斯欧司朗精心准备了照明领域专业大咖的深度分享,无论是照明领域的资深从业者,还是对照明科技充满好奇的探索者,在这里,您都将大有所获。在艾迈斯欧司朗照明全球产品市场VP Geral
    艾迈斯欧司朗 2024-12-25 20:05 48浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦