负反馈电路中的馈通

原创 面包板社区 2022-02-13 20:00

图1显示了一个基本的负反馈系统。信号sI和sO可以是电压或电流,因此我们有四种可能的放大器类型或拓扑结构。



图1:基本的负反馈系统


无论拓扑结构如何,闭环增益都是通用形式:

其中Aideal是理想极限aε→∞时的闭环增益,aε是开环增益,T=aε/Aideal是环路增益。尽管运算放大器是电压输入/电压输出(V-V)器件,但它可以配置为四种拓扑结构中的任何一种。现在我们来讨论I-I拓扑结构,并由此引出负反馈的其它细节。


电流放大器


图2的反馈拓扑结构通常称为并联-串联型,其中具有开环电压增益av的运放被配置为电流放大,其增益可表示为A=iO/iI。(除了av<∞的情况,该运放假定是理想的。另外,为简单起见,我们假设负载短路,这是电流输出器件最简单的负载类型,就像开路是电压输出器件最简单的负载一样。)


图2:使用运放作为电流放大器,或I-I转换器。


要得到Aideal,参考图3a,我们有:

消除vO,整理得到:

参考图3b,可以看到沿环路传输的信号vD首先被av放大,然后通过LD和R2完整地返回到运放的反相输入端,因此环路增益仅为T=av。我们是否可以应用公式(1)得到下面的公式?

让我们通过PSpice来看一些特殊情况,例如R1=R2=10kΩ和av=10V/V。然后,公式(3)给出A=2/(1+1/10)=1.818A/A。然而,PSpice却给出1.909A/A,虽然差别不大,但对于这样简单的电路来说肯定是不可接受的。在图3c中av→0的情况下甚至出现更大的差异。通过检查发现,iO=iI,因此A=iO/iI=1A/A,而公式(3)预测A=2av/(av+1)=2x0/(0+1)=0A/A!


图3:获得 (a)Aideal、(b)环路增益T和(c)馈通增益aft的电路。


有什么问题?公式(3)的问题在于它试图使I-I转换器符合图1的原理图,它假设信号单向传输,即通过放大器正向传输,以及通过反馈网络反向传输,如图中的箭头图形所示。然而,仔细审视I-I转换器就会发现,反馈网络是双向的,如图3c所示,在将vN=vO/(1+R2/R1)反馈回运放的反相输入时,网络也将iI前馈到负载,绕开了运放。


这时,馈通增益为aft=1A/A。我们该如何考虑这种双向性?


电路很简单,我们可以直接分析它(见附录)。确切的结果是:

这与公式(3)不完全相同。但是,我们可以轻松地将公式(4)重新表达为:

其中最后一项确实考虑了信号馈通。在我们的示例中(R1=R2=10kΩ及av=10V/V),公式(5)给出A=1.818+1/11=1.909A/A,本来就应该这样。


通过PSpice查看各种增益还是很直观的。图4a的电路采用了一个直流增益为10V/V、增益带宽积(GBP)为10MHz的运放(是的,特意采用低于标准的运算放大器,以便更好地显示由馈通产生的影响)。从图4b的迹线可以看出,只要av(迹线#1)足够高,馈通分量(迹线#3)可以忽略不计。然而,av随着频率滚降,馈通变得越来越相关,最终占主导地位。因此在高频下,迹线#4与迹线#3汇合,使得A→aft。


图4:(a)用于仿真图2电流放大器的PSpice电路 (b)相应的迹线:#1是开环增益av,#2和#3是公式(5)右边的第一和第二分量,#4是整体闭环增益A。


渐近增益模型


讨论了简单的I-I转换器,我们再用图5的框图对图1的简单框图作一个概括,称之为渐近增益模型,该电路给出:


图5:考虑误差放大器的馈通并概括图1的框图。


其中:


我们应该担心馈通吗?


将馈通项aftsI视为一种噪声形式是有益的,我们将之反映到误差放大器的输入,即(aftsI)/aε。图6的框图可以很容易证明这一点。

很明显,只要|aft|<<|aε|,馈通可能就不是问题。但是,aε随着频率滚降,aft变得越来越相关,并最终占据主导。

图6:将馈通建模为一种输入噪声形式。


我们是否应关心馈通取决于实际应用。

图7:使用GBP=1MHz和ro=100Ω的运放来实现积分器。


在积分器电路中,馈通可能是一个问题。图7使用了一个1MHz运算放大器,其输出阻抗ro=100Ω,以接近理想的传递函数:

其中f0是积分器的单位增益频率:

在f→∞时,传递函数应降至零。然而,ro≠0的存在导致高频馈通增益aft(∞)≠0。因为在高频时C表现为短路,我们有:


  图8:图7积分器的频率特性曲线,迹线#1是开环增益,迹线#2是理想的积分传递函数Hideal,迹线#3是实际传递函数H(jf)。


图8显示实际响应H仅在100Hz


从图9a可以看出,串联输入运放配置中的馈通往往不那么严重,因为输入电压Vi必须通过运放输入阻抗zi传输,这个阻抗通常很大。需要注意的是,在高频时zi往往是容性的,因此会增加馈通量。并联输入配置中的馈通更严重,因为输入电流Ii直接馈入反馈网络。但要注意,zo可能会在高频下表现出感性,因此其分流减少将允许更多的馈通。对于电流反馈运算放大器(见图9b),输入侧的情况相反。输入引脚上缓冲器的输出阻抗zn通常较小,因此Vi通过zn直接馈入反馈网络,而Ii则被zn分流到输入缓冲器。


图9:研究(a)电压反馈和(b)电流反馈运放中的馈通。


附录:电流放大器的直接分析


我们看一下如何得到图2中电流放大器闭环电流增益A和输入/输出电阻Ri和Ro的表达式。该电路非常简单,我们可以直接对其进行分析,忽视反馈分析的必要步骤。要得到A,使用图10a的电路,得到:

其中:

消除vO,整理得到:

图10:三个电路分别可以得到图2中电流放大器的(a)电流增益A=iO/iI、(b)输入电阻Ri和(c)输出电阻Ro。

我们也一并找出闭环终端电阻Ri和Ro。为了找到输入源iI所见的电阻Ri,应用如图10b中的测试电流i,得到v:

求解比率Ri=v/i,得到:

为了找到负载LD所见的输出电阻Ro,施加一个测试电压v,如图10c所示,可以得到i:

其中:

求解比率Ro=v/i,得到:

小测验


四名学生(A、B、C和X)正在讨论图11的V-I转换器,假设该转换器使用的运算放大器具有无限大输入电阻、零输出电阻,以及很大的开环增益av。具体而言,他们试图求得从负载LD侧看进去的输出电阻Ro。

A:很明显,LD往上看到运放的输出电阻,假设为零;向下只看到R,因为没有电流流入反相输入端。因此,Ro=0+R=R。

X:对!

B:错!通过反馈作用,运放在R和源vI之间形成虚短,前面假设它是理想的,因此Ro=0+0=0。

X:对!

C:传说Ro应该比较大……

X:这就是我一直说的:Ro→∞,至少理想情况下是这样。

问题:你支持哪个学生?

图11:图示理想V-I转换器中有 (a)iO=(1/R)vI,(b)从负载侧看进去的电阻为Ro。


(原文刊登于ASPENCORE旗下EDN英文网站:Feedthrough in negative-feedback circuits。)


本文为《电子技术设计》2019年1月刊杂志文章。

面包板社区 面包板社区——中国第一电子人社交平台 面包板社区是Aspencore旗下媒体,整合了电子工程专辑、电子技术设计、国际电子商情丰富资源。社区包括论坛、博客、问答,拥有超过250万注册用户,加入面包板社区,从菜鸟变大神,打造您的电子人脉社交圈!
评论
  •         霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子
    锦正茂科技 2024-12-10 11:07 64浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 66浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 84浏览
  •         在有电流流过的导线周围会感生出磁场,再用霍尔器件检测由电流感生的磁场,即可测出产生这个磁场的电流的量值。由此就可以构成霍尔电流、电压传感器。因为霍尔器件的输出电压与加在它上面的磁感应强度以及流过其中的工作电流的乘积成比例,是一个具有乘法器功能的器件,并且可与各种逻辑电路直接接口,还可以直接驱动各种性质的负载。因为霍尔器件的应用原理简单,信号处理方便,器件本身又具有一系列的du特优点,所以在变频器中也发挥了非常重要的作用。  &nb
    锦正茂科技 2024-12-10 12:57 76浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 70浏览
  • 本文介绍Linux系统(Ubuntu/Debian通用)挂载exfat格式U盘的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。修改对应的内核配置文件# 进入sdk目录cdrk3562_linux# 编辑内核配置文件vi./kernel-5.10/arch/arm64/configs/rockchip_linux_defconfig注:不清楚内核使用哪个defc
    Industio_触觉智能 2024-12-10 09:44 90浏览
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 136浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 74浏览
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 81浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 49浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 47浏览
  • 概述 通过前面的研究学习,已经可以在CycloneVGX器件中成功实现完整的TDC(或者说完整的TDL,即延时线),测试结果也比较满足,解决了超大BIN尺寸以及大量0尺寸BIN的问题,但是还是存在一些之前系列器件还未遇到的问题,这些问题将在本文中进行详细描述介绍。 在五代Cyclone器件内部系统时钟受限的情况下,意味着大量逻辑资源将被浪费在于实现较大长度的TDL上面。是否可以找到方法可以对此前TDL的长度进行优化呢?本文还将探讨这个问题。TDC前段BIN颗粒堵塞问题分析 将延时链在逻辑中实现后
    coyoo 2024-12-10 13:28 101浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 105浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 69浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦