工作中遇到的多核 ARM CPU 越来越多,总结分享一些多核启动的知识,希望能帮助更多小伙伴。
在 ARM64 架构下如果想要启动多核,有 spin-table 和 psci 两种方式,下面针对这两种启动流程进行分析。
boot-wrapper-aarch64 version : 28932c41e14d730b8b9a7310071384178611fb32
linux v5.14
嵌入式系统的启动的基本流程是先运行 bootloader
,然后由 bootloader
引导启动 kernel,这里无论启动的是 rt-thread 或者是 linux 原理都是一样的。
上电后所有的 CPU
都会从 bootrom
里面开始执行代码,为了防止并发造成的一些问题,需要将除了 primary cpu
以外的 cpu
拦截下来,这样才能保证启动的顺序是可控的。
在启动的过程中,bootloader
中有一道栅栏,它拦住了除了 cpu0
外的其他 cpu
。cpu0
直接往下运行,进行设备初始化以及运行 Kernel
。其他 cpu0
则在栅栏外进入睡眠状态。
cpu0
在初始化 smp
的时候,会在 cpu-release-addr
里面填入一个地址并唤醒其他 cpu
。这时睡眠的 cpu
接受到信号,醒来的时候会先检查 cpu-release-addr
这个地址里面的数据是不是有效。如果该地址是有效的(非 0 ),意味着自己需要真正开始启动了,接下来他会跳转到。
下面我们看看 arm64
里面的实现,在 arch/arm64/boot/dts/xxx.dts
中有如下描述:
1cpu@0 {
2 device_type = "cpu";
3 compatible = "arm,armv8";
4 reg = <0x0 0x0="">;
5 enable-method = "spin-table"; /* 选择使用 spin-table 方式启动 */
6 cpu-release-addr = <0x0 0x8000fff8="">;
7};
在 arch/arm64/kernel/smp_spin_table.c
中处理了向其他 cpu 发送信号的方法:
1、先是获取 release_addr 的虚拟地址
2、向该地址写入从 cpu 的入口地址
3、通过 sev() 指令唤醒其他 cpu
1static int smp_spin_table_cpu_prepare(unsigned int cpu)
2{
3 __le64 __iomem *release_addr;
4 phys_addr_t pa_holding_pen = __pa_symbol(function_nocfi(secondary_holding_pen));
5
6 if (!cpu_release_addr[cpu])
7 return -ENODEV;
8
9 /*
10 * The cpu-release-addr may or may not be inside the linear mapping.
11 * As ioremap_cache will either give us a new mapping or reuse the
12 * existing linear mapping, we can use it to cover both cases. In
13 * either case the memory will be MT_NORMAL.
14 */
15 release_addr = ioremap_cache(cpu_release_addr[cpu],
16 sizeof(*release_addr));
17 if (!release_addr)
18 return -ENOMEM;
19
20 /*
21 * We write the release address as LE regardless of the native
22 * endianness of the kernel. Therefore, any boot-loaders that
23 * read this address need to convert this address to the
24 * boot-loader's endianness before jumping. This is mandated by
25 * the boot protocol.
26 */
27 writeq_relaxed(pa_holding_pen, release_addr);
28 dcache_clean_inval_poc((__force unsigned long)release_addr,
29 (__force unsigned long)release_addr +
30 sizeof(*release_addr));
31
32 /*
33 * Send an event to wake up the secondary CPU.
34 */
35 sev();
36
37 iounmap(release_addr);
38
39 return 0;
40}
Bootloader
部分以 boot-wrapper-aarch64
中的代码做示例,非主 CPU 会轮询检查 mbox(其地址等同cpu-release-addr)中的值,当其值为 0 的时候继续睡眠,否则就跳转到内核执行,代码如下所示:
1/**
2 * Wait for an address to appear in mbox, and jump to it.
3 *
4 * @mbox: location to watch
5 * @invalid: value of an invalid address, 0 or -1 depending on the boot method
6 * @is_entry: when true, pass boot parameters to the kernel, instead of 0
7 */
8void __noreturn spin(unsigned long *mbox, unsigned long invalid, int is_entry)
9{
10 unsigned long addr = invalid;
11
12 while (addr == invalid) {
13 wfe();
14 addr = *mbox;
15 }
16
17 if (is_entry)
18#ifdef KERNEL_32
19 jump_kernel(addr, 0, ~0, (unsigned long)&dtb, 0);
20#else
21 jump_kernel(addr, (unsigned long)&dtb, 0, 0, 0);
22#endif
23
24 jump_kernel(addr, 0, 0, 0, 0);
25
26 unreachable();
27}
28
29/**
30 * Primary CPU finishes platform initialisation and jumps to the kernel.
31 * Secondaries are parked, waiting for their mbox to contain a valid address.
32 *
33 * @cpu: logical CPU number
34 * @mbox: location to watch
35 * @invalid: value of an invalid address, 0 or -1 depending on the boot method
36 */
37void __noreturn first_spin(unsigned int cpu, unsigned long *mbox,
38 unsigned long invalid)
39{
40 if (cpu == 0) {
41 init_platform();
42
43 *mbox = (unsigned long)&entrypoint;
44 sevl();
45 spin(mbox, invalid, 1);
46 } else {
47 *mbox = invalid;
48 spin(mbox, invalid, 0);
49 }
50
51 unreachable();
52}
另外一种 enable-method 就是 PSCI,依旧先从 kernel 开始分析。先看 arch/arm64/boot/dts/mediatek/mt8173.dtsi
文件,里面 cpu
节点选择了PSCI 的方法:
1cpu0: cpu@0 {
2 compatible = "arm,cortex-a53";
3 device_type = "cpu";
4 enable-method = "psci"; /* 启动方式选择 PSCI */
5 operating-points-v2 = <&cpu_opp_table>;
6 reg = <0x0>;
7 cpu-idle-states = <&CPU_SLEEP_0>;
8};
并且有一个 PSCI 的节点:
1psci {
2 compatible = "arm,psci-1.0", "arm,psci-0.2", "arm,psci";
3 method = "smc";
4 cpu_suspend = <0x84000001>;
5 cpu_off = <0x84000002>;
6 cpu_on = <0x84000003>;
7};
在 PSCI
中的节点详细说明请参考文档:kernel/Documentation/devicetree/bindings/arm/psci.txt。在此仅说一下 method 字段。该字段有两个可选值:smc 和 hvc。表示调用 PSCI 功能使用什么指令。smc、hvc、svc 这些指令都是由低运行级别向更高级别请求服务的指令。
和系统调用一样。调用了该指令,cpu 会进入异常切入更高的权限。异常处理程序根据下面传上来的参数决定给予什么服务,smc 陷入 EL3,hvc 陷入 EL2,svc 陷入EL1。在 ARMv8 里面,EL3 总是是 secure 状态,EL2 是虚拟机管态,EL1 是普通的系统态。
接下来可以看看 arch/arm64/kernel/psci.c
里面的代码,psci_ops.cpu_on 最终调用 smc call:
1static int cpu_psci_cpu_boot(unsigned int cpu)
2{
3 phys_addr_t pa_secondary_entry = __pa_symbol(function_nocfi(secondary_entry));
4 int err = psci_ops.cpu_on(cpu_logical_map(cpu), pa_secondary_entry);
5 if (err)
6 pr_err("failed to boot CPU%d (%d)\n", cpu, err);
7
8 return err;
9}
10
11static unsigned long __invoke_psci_fn_smc(unsigned long function_id,
12 unsigned long arg0, unsigned long arg1,
13 unsigned long arg2)
14{
15 struct arm_smccc_res res;
16
17 arm_smccc_smc(function_id, arg0, arg1, arg2, 0, 0, 0, 0, &res);
18 return res.a0;
19}
Bootloader 以 boot-wrapper-aarch64
作分析,看 psci.c 里的 psci_call 实现函数,通过 fid 与 PSCI_CPU_OFF 和 PSCI_CPU_ON 相比,找出需要执行的动作:
1long psci_call(unsigned long fid, unsigned long arg1, unsigned long arg2)
2{
3 switch (fid) {
4 case PSCI_CPU_OFF:
5 return psci_cpu_off();
6
7 case PSCI_CPU_ON_64:
8 return psci_cpu_on(arg1, arg2);
9
10 default:
11 return PSCI_RET_NOT_SUPPORTED;
12 }
13}
当然 boot-wrapper-aarch64
里也需要同样的定义:
1#define PSCI_CPU_OFF 0x84000002
2#define PSCI_CPU_ON_32 0x84000003
3#define PSCI_CPU_ON_64 0xc4000003
boot-wrapper-aarch64
按照和 kernel
约定的好参数列表,为目标 cpu
设置好跳转地址,然后返回到 kernel
执行,下面给出关键代码说明:
1static int psci_cpu_on(unsigned long target_mpidr, unsigned long address)
2{
3 int ret;
4 unsigned int cpu = find_logical_id(target_mpidr);
5 unsigned int this_cpu = this_cpu_logical_id();
6
7 if (cpu == MPIDR_INVALID)
8 return PSCI_RET_INVALID_PARAMETERS;
9
10 bakery_lock(branch_table_lock, this_cpu);
11 ret = psci_store_address(cpu, address); /* 写入启动地址 */
12 bakery_unlock(branch_table_lock, this_cpu);
13
14 return ret;
15}
目前比较主流的多核启动方式是 PSCI,一般正式的产品都有 ATF,通过 PSCI 可以实现 CPU 的开启关闭以及挂起等操作。在实际的移植工作过程中,如果有带有 ATF 的 bootloader 那多核移植就相对容易很多,如果没有的话,也可以采用 spin_table 的方式来启动多核。
1.有哪些芯片不容易被国产化?
2.用IAR EWARM如何开发航顺HK32F030M微处理器?
3.用这种高效实现数学函数的方式,单片机能运行如飞!
4.嵌入式系统从编程智力迈入学习智力,要关注深度学习!
5.10分钟教你在MDK中部署LVGL
6.STM32L4系列MCU的五种振荡器和使用说明
免责声明:本文系网络转载,版权归原作者所有。如涉及作品版权问题,请与我们联系,我们将根据您提供的版权证明材料确认版权并支付稿酬或者删除内容。