ARM64的多核启动流程分析


工作中遇到的多核 ARM CPU 越来越多,总结分享一些多核启动的知识,希望能帮助更多小伙伴。

在 ARM64 架构下如果想要启动多核,有 spin-table 和 psci 两种方式,下面针对这两种启动流程进行分析。

代码版本

  • boot-wrapper-aarch64 version : 28932c41e14d730b8b9a7310071384178611fb32

  • linux v5.14

多核 CPU 的启动方式

嵌入式系统的启动的基本流程是先运行 bootloader ,然后由 bootloader 引导启动 kernel,这里无论启动的是 rt-thread 或者是 linux 原理都是一样的。

上电后所有的 CPU 都会从 bootrom 里面开始执行代码,为了防止并发造成的一些问题,需要将除了 primary cpu 以外的 cpu 拦截下来,这样才能保证启动的顺序是可控的。

spin-table 启动方法

在启动的过程中,bootloader 中有一道栅栏,它拦住了除了 cpu0 外的其他 cpucpu0 直接往下运行,进行设备初始化以及运行 Kernel。其他 cpu0 则在栅栏外进入睡眠状态。

cpu0 在初始化 smp 的时候,会在 cpu-release-addr 里面填入一个地址并唤醒其他 cpu。这时睡眠的 cpu 接受到信号,醒来的时候会先检查 cpu-release-addr 这个地址里面的数据是不是有效。如果该地址是有效的(非 0 ),意味着自己需要真正开始启动了,接下来他会跳转到。

下面我们看看 arm64 里面的实现,在 arch/arm64/boot/dts/xxx.dts 中有如下描述:

1cpu@0 {
2    device_type = "cpu";
3    compatible = "arm,armv8";
4    reg = <0x0 0x0="">;
5    enable-method = "spin-table"/* 选择使用 spin-table 方式启动  */
6    cpu-release-addr = <0x0 0x8000fff8="">;
7};


在 arch/arm64/kernel/smp_spin_table.c 中处理了向其他 cpu 发送信号的方法:

1、先是获取 release_addr 的虚拟地址

2、向该地址写入从 cpu 的入口地址

3、通过 sev() 指令唤醒其他 cpu


 1static int smp_spin_table_cpu_prepare(unsigned int cpu)
2
{
3    __le64 __iomem *release_addr;
4    phys_addr_t pa_holding_pen = __pa_symbol(function_nocfi(secondary_holding_pen));
5
6    if (!cpu_release_addr[cpu])
7        return -ENODEV;
8
9    /*
10     * The cpu-release-addr may or may not be inside the linear mapping.
11     * As ioremap_cache will either give us a new mapping or reuse the
12     * existing linear mapping, we can use it to cover both cases. In
13     * either case the memory will be MT_NORMAL.
14     */

15    release_addr = ioremap_cache(cpu_release_addr[cpu],
16                     sizeof(*release_addr));
17    if (!release_addr)
18        return -ENOMEM;
19
20    /*
21     * We write the release address as LE regardless of the native
22     * endianness of the kernel. Therefore, any boot-loaders that
23     * read this address need to convert this address to the
24     * boot-loader's endianness before jumping. This is mandated by
25     * the boot protocol.
26     */

27    writeq_relaxed(pa_holding_pen, release_addr);
28    dcache_clean_inval_poc((__force unsigned long)release_addr,
29                (__force unsigned long)release_addr +
30                    sizeof(*release_addr));
31
32    /*
33     * Send an event to wake up the secondary CPU.
34     */

35    sev();
36
37    iounmap(release_addr);
38
39    return 0;
40}


Bootloader 部分以 boot-wrapper-aarch64 中的代码做示例,非主 CPU 会轮询检查 mbox(其地址等同cpu-release-addr)中的值,当其值为 0 的时候继续睡眠,否则就跳转到内核执行,代码如下所示:

 1/**
2 * Wait for an address to appear in mbox, and jump to it.
3 *
4 * @mbox: location to watch
5 * @invalid: value of an invalid address, 0 or -1 depending on the boot method
6 * @is_entry: when true, pass boot parameters to the kernel, instead of 0
7 */

8void __noreturn spin(unsigned long *mbox, unsigned long invalid, int is_entry)
9
{
10    unsigned long addr = invalid;
11
12    while (addr == invalid) {
13        wfe();
14        addr = *mbox;
15    }
16
17    if (is_entry)
18#ifdef KERNEL_32
19        jump_kernel(addr, 0, ~0, (unsigned long)&dtb, 0);
20#else
21        jump_kernel(addr, (unsigned long)&dtb, 000);
22#endif
23
24    jump_kernel(addr, 0000);
25
26    unreachable();
27}
28
29/**
30 * Primary CPU finishes platform initialisation and jumps to the kernel.
31 * Secondaries are parked, waiting for their mbox to contain a valid address.
32 *
33 * @cpu: logical CPU number
34 * @mbox: location to watch
35 * @invalid: value of an invalid address, 0 or -1 depending on the boot method
36 */

37void __noreturn first_spin(unsigned int cpu, unsigned long *mbox,
38               unsigned long invalid)

39
{
40    if (cpu == 0) {
41        init_platform();
42
43        *mbox = (unsigned long)&entrypoint;
44        sevl();
45        spin(mbox, invalid, 1);
46    } else {
47        *mbox = invalid;
48        spin(mbox, invalid, 0);
49    }
50
51    unreachable();
52}

PSCI 启动方法

另外一种 enable-method 就是 PSCI,依旧先从 kernel 开始分析。先看 arch/arm64/boot/dts/mediatek/mt8173.dtsi 文件,里面 cpu 节点选择了PSCI 的方法:

1cpu0: cpu@0 {
2    compatible = "arm,cortex-a53";
3    device_type = "cpu";
4    enable-method = "psci";    /* 启动方式选择 PSCI */
5    operating-points-v2 = <&cpu_opp_table>;
6    reg = <0x0>;
7    cpu-idle-states = <&CPU_SLEEP_0>;
8};


并且有一个 PSCI 的节点:

1psci {
2    compatible = "arm,psci-1.0""arm,psci-0.2""arm,psci";
3    method = "smc";
4    cpu_suspend   = <0x84000001>;
5    cpu_off          = <0x84000002>;
6    cpu_on          = <0x84000003>;
7};


在 PSCI 中的节点详细说明请参考文档:kernel/Documentation/devicetree/bindings/arm/psci.txt。在此仅说一下 method 字段。该字段有两个可选值:smc 和 hvc。表示调用 PSCI 功能使用什么指令。smc、hvc、svc 这些指令都是由低运行级别向更高级别请求服务的指令。

和系统调用一样。调用了该指令,cpu 会进入异常切入更高的权限。异常处理程序根据下面传上来的参数决定给予什么服务,smc 陷入 EL3,hvc 陷入 EL2,svc 陷入EL1。在 ARMv8 里面,EL3 总是是 secure 状态,EL2 是虚拟机管态,EL1 是普通的系统态。

接下来可以看看 arch/arm64/kernel/psci.c 里面的代码,psci_ops.cpu_on 最终调用 smc call:

 1static int cpu_psci_cpu_boot(unsigned int cpu)
2
{
3    phys_addr_t pa_secondary_entry = __pa_symbol(function_nocfi(secondary_entry));
4    int err = psci_ops.cpu_on(cpu_logical_map(cpu), pa_secondary_entry);
5    if (err)
6        pr_err("failed to boot CPU%d (%d)\n", cpu, err);
7
8    return err;
9}
10
11static unsigned long __invoke_psci_fn_smc(unsigned long function_id,
12            unsigned long arg0, unsigned long arg1,
13            unsigned long arg2)
14{
15    struct arm_smccc_res res;
16
17    arm_smccc_smc(function_id, arg0, arg1, arg2, 0000, &res);
18    return res.a0;
19}


Bootloader 以 boot-wrapper-aarch64 作分析,看 psci.c 里的 psci_call 实现函数,通过 fid 与 PSCI_CPU_OFF 和 PSCI_CPU_ON 相比,找出需要执行的动作:

 1long psci_call(unsigned long fid, unsigned long arg1, unsigned long arg2)
2
{
3    switch (fid) {
4    case PSCI_CPU_OFF:
5        return psci_cpu_off();
6
7    case PSCI_CPU_ON_64:
8        return psci_cpu_on(arg1, arg2);
9
10    default:
11        return PSCI_RET_NOT_SUPPORTED;
12    }
13}


当然 boot-wrapper-aarch64 里也需要同样的定义:

1#define PSCI_CPU_OFF        0x84000002
2#define PSCI_CPU_ON_32      0x84000003
3#define PSCI_CPU_ON_64      0xc4000003


boot-wrapper-aarch64 按照和 kernel 约定的好参数列表,为目标 cpu 设置好跳转地址,然后返回到 kernel  执行,下面给出关键代码说明:

 1static int psci_cpu_on(unsigned long target_mpidr, unsigned long address)
2
{
3    int ret;
4    unsigned int cpu = find_logical_id(target_mpidr);
5    unsigned int this_cpu = this_cpu_logical_id();
6
7    if (cpu == MPIDR_INVALID)
8        return PSCI_RET_INVALID_PARAMETERS;
9
10    bakery_lock(branch_table_lock, this_cpu);
11    ret = psci_store_address(cpu, address);   /* 写入启动地址  */
12    bakery_unlock(branch_table_lock, this_cpu);
13
14    return ret;
15}

总结

目前比较主流的多核启动方式是 PSCI,一般正式的产品都有 ATF,通过 PSCI 可以实现 CPU 的开启关闭以及挂起等操作。在实际的移植工作过程中,如果有带有 ATF 的 bootloader 那多核移植就相对容易很多,如果没有的话,也可以采用 spin_table 的方式来启动多核。


👇 点击阅读原文进入论坛

RTThread物联网操作系统 帮助您了解RT-Thread相关的资讯.
评论
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 80浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 159浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 619浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 324浏览
  • 飞凌嵌入式基于瑞芯微RK3562系列处理器打造的FET3562J-C全国产核心板,是一款专为工业自动化及消费类电子设备设计的产品,凭借其强大的功能和灵活性,自上市以来得到了各行业客户的广泛关注。本文将详细介绍如何启动并测试RK3562J处理器的MCU,通过实际操作步骤,帮助各位工程师朋友更好地了解这款芯片。1、RK3562J处理器概述RK3562J处理器采用了4*Cortex-A53@1.8GHz+Cortex-M0@200MHz架构。其中,4个Cortex-A53核心作为主要核心,负责处理复杂
    飞凌嵌入式 2025-01-24 11:21 37浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 123浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 178浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 666浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 206浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 195浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 134浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 210浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 145浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦