李星宇:芯片缺货的终极解决之道

汽车电子与软件 2022-02-10 07:45



汽车行业缺芯其实并不是新鲜事,半导体行业本身就是典型的周期性行业,周期一般是4-6年,每个周期都是从芯片短缺开始启动。


上一次比较大的缺货行情是在2008年次贷危机发生后,次年全球汽车销量下降了13.5%,美国更是下降了34%,下游客户大举砍单,但到2010年,全球总产量迅速恢复,增长了26%。需求暴增导致了非常明显的缺货,但那一次缺货恢复比较快,而且主要是在Tier1和芯片公司之间解决的,车企的体感不强。


这次缺货还叠加了汽车芯片需求的暴增,今天,一辆30万元价位的智能电动汽车对于芯片的需求约是同等价位的燃油车的2~3倍,达到1200至1700颗,折合下来相当于整整一个8寸晶圆,其中用于新能源的功率芯片占了大约一半,如IGBT等,另一半主要是用于智能化的数字芯片,包括MCU和AI计算芯片等。



智能电动汽车对于芯片的需求增量无疑是惊人的。扩大产能势在必行。因为下游芯片缺货带来的爆炸性需求,英特尔、台积电、中芯国际、三星都发布了规模空前的投资扩产计划,统计下来2030年前有超过4000亿美元的投资计划。


很不幸,连扩产能都变得比以前更慢了,在缺货的传导效应下,缺的不单是芯片,连半导体生产设备都缺了,设备的交货期从之前的只要半年,延长到现在的一年甚至一年半。近日半导体设备龙头ASML位于德国柏林的一家工厂发生火灾,更是给设备交付蒙上了一层阴影。


中芯国际的彭进表示,全球半导体市场出现不遵循市场需求的重复建设,推高了设备交货周期,这让晶圆厂的扩产更加慢,进一步影响了芯片供给。


从车用半导体的整体产能来看,根据台湾工研院的数据,2020年,代工厂的产能仅占31%,产能大头都在采用IDM模式的大厂手里,即自建工厂进行生产的公司。



对于这次缺货最严重的MCU芯片,行业三驾马车瑞萨、恩智浦和英飞凌都是采用IDM模式,扩产速度相比代工厂要更慢,也更谨慎。瑞萨目前的计划是到 2023 年才能将其车用 MCU 产量提高 50%。



对于这次缺货最严重的MCU芯片,行业三驾马车瑞萨、恩智浦和英飞凌都是采用IDM模式,扩产速度相比代工厂要更慢,也更谨慎。瑞萨目前的计划是到 2023 年才能将其车用 MCU 产量提高 50%。


总结来看,扩产能属于必要手段,但需要时间,更需要思考的是:单纯靠扩产能是否能完全解决问题?


相比于芯片需求数量的增长,汽车智能化的底层架构正在发生深刻变化,芯片的未来趋势也因此发生了质变。


治本之道在于计算集中化


传统汽车使用的分布式ECU计算架构需要大约50~150颗MCU,对应的芯片种类也特别多,而且大都是基于成熟工艺的芯片,没法充分利用新的工艺制程带来的高阶产能。如果把主机厂所需要管理的所有芯片型号加起来,更是超过1000种,可以说,不改变汽车电子电气架构(EEA),芯片供应链的安全就很难以保证。


从技术上讲,靠增加ECU的数量来提升汽车的智能,已经难以为继。当前智能汽车正在掀起一场电子电气架构变革,从分布式计算架构往集中式的计算架构演进。当前的演进重点是域控制器架构,但从终局来看,集中式的计算架构打造的是一个高性能的中央计算平台。


正如生物的智力进化史一样,从低等生物到高等生物,对应的是神经元的持续集中化,并最终了进化出了大脑;计算集中化也让汽车的智能得到质的提升。



中央计算架构能够将芯片的用量和种类降低至少10倍以上,从而急剧降低供应链管理难度和风险。更重要的是:单颗芯片的功能集成度和性能比原来提高两个数量级以上,极大增强了芯片的通用性,允许下游客户建立通用芯片选型库,提升芯片复用率,对供应链的好处不言而喻。


这场技术变革也将使整个汽车芯片行业的竞争格局发生深刻的变化,带来行业新一轮的洗牌,也迎来了新的创新机遇。



还是以MCU芯片为例,当前汽车行业大规模使用的MCU性能并不强,32位的MCU虽然已经有不少新品,但8到16位的MCU依然是出货主力,其对应的制程也多在65nm以上。所以很多人认为汽车MCU在技术上并不先进,但行业前沿已然不是这样,今天先进的MCU相对于过去的8位MCU,性能至少提升了3个数量级,功能集中度也在飙升,多核CPU、网关都整合了进来,下一代MCU的制程更将提升到16nm。


可以说,最新的MCU完全可以展现出以一挡十的威力,并且可以充分利用代工厂的先进产能。


有人会问为什么缺芯这么严重?为什么到现在还是落后的芯片占主流,而不使用更先进的汽车MCU呢?


从分布式ECU架构走


向集中式架构,即使是域控制器架构,都不是一个容易的过程。这涉及到大规模的软件开发,以及大量系统测试验证,开发周期往往需要两年以上。


如果不改变分布式ECU架构,仅针对单个ECU进行MCU芯片的替代,也并非高效的解决方案,替换芯片的开发周期起码需要一到两年,而更麻烦的问题在于ECU的更新带来的测试验证工作,尤其是与安全相关的ECU,其测试验证周期非常长,而且耗资巨大。


这就带来一个风险:整车电子电气架构变革在加速推进,ECU更新完成后就已经落后,产品因为缺乏市场竞争力而卖不出去。


同时,超过七成的ECU是黑盒方案,替换芯片的更新工作需要依赖Tier1供应商,又需要一笔不菲的开发费用,而且也缺乏规模效应,主机厂买单意愿不强。


也正因为如此,汽车芯片行业的头部玩家在扩产能方面才表现谨慎,针对旧型号的产能一旦建起来,而技术变革又在往前走,市场需求一变,就很容易陷入踏空的危险。


AI计算芯片可能是这个趋势里最大的机遇,也是一个较新的市场,在中央计算平台时代,仅AI计算芯片的价值就可能达到每台车一千美元。


由于下游需求在持续飙升,智能汽车领域掀起了AI算力的竞赛,其背后的驱动力是海量的数据,数据量随着传感器的增加而飙升,在2到3年之后,高端汽车会标配12-13个摄像头,覆盖车外和车内,每个摄像头的分辨率正在从100~200万像素快速升级到800万。



从功能的角度来看,从L2到L4,每提升一级,AI计算的量都要提升一个数量级,其结果是:AI芯片将替代过去的CPU,成为中央计算平台的中心,结合高性能MCU组成中央计算加区域控制器的架构,将为软件定义汽车提供统一、强大的计算平台。


简而言之,这场变革依然需要时间,但趋势是确定的。三年前,我曾发表万字长文《向超级中央计算机迈进--智能汽车电子构架变革迎接数字化重塑》,论述由特斯拉引领的技术趋势,今天,计算集中化的进程正在加速,从目前的态势来看,域控制器将在未来两年内成为主流。乐观预计,到2025年,中央计算平台将成为高端车的标配。


计算集中化改变行业运行逻辑


计算集中化带来的行业影响是深远的。


从下游产商的角度来讲,芯片供给侧情况是共性因素,对谁家基本都一样,但如果在计算集中化应用方面获得领先优势,将能带来的更强大和灵活的供应链管理能力,进而获得市场竞争优势。这也从一个侧面解释了,为何主机厂在过去的一年掀起了一场算力平台的军备竞赛。



计算集中化在技术上对下游公司提出了两种能力要求:计算架构的定义能力和强大的软件能力,这样才能对芯片选型有判断,才能在供应链管理方面获得主动权。



计算集中化在技术上对下游公司提出了两种能力要求:计算架构的定义能力和强大的软件能力,这样才能对芯片选型有判断,才能在供应链管理方面获得主动权。


历史上,IBM之所以能成为PC产业的开创者,就是因为他有强大的软硬件能力,这背后体现了技术变革期的底层逻辑:在产业发展早期,软件和硬件都有多种技术路线,简单拼凑无法发挥各自的优势,只有具备软硬结合的架构设计思想,深入掌握软硬件之间的协作关系,才能有效利用好芯片的算力,打造强大的整机系统。


从商业角度看,计算集中化将解锁新的盈利模式,中央计算平台可以打造一个稳固的底层软硬件平台,实现软硬解耦,从而使持续的软件服务成为可能。


但软硬解耦有一个前提:操作系统和芯片的深度结合,PC历史上,英特尔和微软通过紧密配合,为整个产业的软件繁荣奠定了基础,才最终在摩托罗拉、Zilog、IBM、SUN等一众竞争对手中杀出来,主导了整个PC产业。


在未来,整车将成为软件服务的流量入口,通过OTA持续提供新的功能和服务。基于软件服务的利润很可能超过整车硬件的利润。


PC行业的历史已经昭示了这一趋势:硬件可以创建一个新的市场,但到成熟期后,利润大头将被软件公司拿走。2003年,PC行业基本成熟,微软的利润已经是戴尔的3.5倍,而到了2011年,更是达到13.1倍。最后,计算集中化带来的改变并不是只是技术和商业,组织变革也势在必行。


过去,在分布式ECU时代,车企只需要做整车集成;到了域控制器时代,软件开始成为重点,但部门依然按照功能进行划分,典型的方式是划分为智能座舱、智能驾驶和智能车控三个部门;在中央计算平台时代,硬件完成大一统整合,完全实现软件定义汽车,开发团队的调整不可避免。


1967年,马尔文·康威提出著名的康威定律(Conway’s Law),指出:系统的架构等同于产生该设计的组织架构。这句话用在这里,就意味着要实现中央计算平台和软件定义汽车,组织的设计也必须打破当前烟囱式的架构,按照集中式的架构来进行。


战略转型势在必行 


解决缺芯问题,短期靠抢货,但属于零和博弈;中期靠产能,属于行业共性因素;长期看技术,这是企业真正能建立竞争优势的地方。


在汽车智能化的浪潮下,如果不重视计算集中化的技术变革趋势,而单纯依靠扩产能来应对缺芯,就如同战争行将进入热兵器时代之时,却只希望扩大弓箭生产来备战。


为了实现这一战略转型,技术、商业模式和组织变革这三要素需要互锁。


中国汽车行业很可能将迎来“咆哮的20年代”,新能源叠加智能化让中国汽车品牌有机会引领百年汽车工业的新时代。若能穿越短期波动的迷雾,着眼先手布局,方能行稳致远,在乌卡时代赢得主动权。


撰文 / 李星宇

编辑 / 张   南
设计 / 师玉超

汽车电子与软件 主要介绍汽车电子软件设计相关内容,每天分享一篇技术文章!
评论
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 173浏览
  • 应用环境与极具挑战性的测试需求在服务器制造领域里,系统整合测试(System Integration Test;SIT)是确保产品质量和性能的关键步骤。随着服务器系统的复杂性不断提升,包括:多种硬件组件、操作系统、虚拟化平台以及各种应用程序和服务的整合,服务器制造商面临着更有挑战性的测试需求。这些挑战主要体现在以下五个方面:1. 硬件和软件的高度整合:现代服务器通常包括多个处理器、内存模块、储存设备和网络接口。这些硬件组件必须与操作系统及应用软件无缝整合。SIT测试可以帮助制造商确保这些不同组件
    百佳泰测试实验室 2024-12-12 17:45 53浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-12 10:13 40浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 109浏览
  • 在智能化技术快速发展当下,图像数据的采集与处理逐渐成为自动驾驶、工业等领域的一项关键技术。高质量的图像数据采集与算法集成测试都是确保系统性能和可靠性的关键。随着技术的不断进步,对于图像数据的采集、处理和分析的需求日益增长,这不仅要求我们拥有高性能的相机硬件,还要求我们能够高效地集成和测试各种算法。我们探索了一种多源相机数据采集与算法集成测试方案,能够满足不同应用场景下对图像采集和算法测试的多样化需求,确保数据的准确性和算法的有效性。一、相机组成相机一般由镜头(Lens),图像传感器(Image
    康谋 2024-12-12 09:45 75浏览
  • 本文介绍瑞芯微RK3588主板/开发板Android12系统下,APK签名文件生成方法。触觉智能EVB3588开发板演示,搭载了瑞芯微RK3588芯片,该开发板是核心板加底板设计,音视频接口、通信接口等各类接口一应俱全,可帮助企业提高产品开发效率,缩短上市时间,降低成本和设计风险。工具准备下载Keytool-ImportKeyPair工具在源码:build/target/product/security/系统初始签名文件目录中,将以下三个文件拷贝出来:platform.pem;platform.
    Industio_触觉智能 2024-12-12 10:27 62浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 112浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 72浏览
  • 铁氧体芯片是一种基于铁氧体磁性材料制成的芯片,在通信、传感器、储能等领域有着广泛的应用。铁氧体磁性材料能够通过外加磁场调控其导电性质和反射性质,因此在信号处理和传感器技术方面有着独特的优势。以下是对半导体划片机在铁氧体划切领域应用的详细阐述: 一、半导体划片机的工作原理与特点半导体划片机是一种使用刀片或通过激光等方式高精度切割被加工物的装置,是半导体后道封测中晶圆切割和WLP切割环节的关键设备。它结合了水气电、空气静压高速主轴、精密机械传动、传感器及自动化控制等先进技术,具有高精度、高
    博捷芯划片机 2024-12-12 09:16 85浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 99浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 88浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 63浏览
  • 全球智能电视时代来临这年头若是消费者想随意地从各个通路中选购电视时,不难发现目前市场上的产品都已是具有智能联网功能的智能电视了,可以宣告智能电视的普及时代已到临!Google从2021年开始大力推广Google TV(即原Android TV的升级版),其他各大品牌商也都跟进推出搭载Google TV操作系统的机种,除了Google TV外,LG、Samsung、Panasonic等大厂牌也开发出自家的智能电视平台,可以看出各家业者都一致地看好这块大饼。智能电视的Wi-Fi连线怎么消失了?智能电
    百佳泰测试实验室 2024-12-12 17:33 53浏览
  • 首先在gitee上打个广告:ad5d2f3b647444a88b6f7f9555fd681f.mp4 · 丙丁先生/香河英茂工作室中国 - Gitee.com丙丁先生 (mr-bingding) - Gitee.com2024年对我来说是充满挑战和机遇的一年。在这一年里,我不仅进行了多个开发板的测评,还尝试了多种不同的项目和技术。今天,我想分享一下这一年的故事,希望能给大家带来一些启发和乐趣。 年初的时候,我开始对各种开发板进行测评。从STM32WBA55CG到瑞萨、平头哥和平海的开发板,我都
    丙丁先生 2024-12-11 20:14 73浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-11 17:58 86浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦