如何利用扬声器构建深度神经网络?

原创 TsinghuaJoking 2022-02-08 16:40

简 介: 来自于康纳尔大学的这篇研究论文给出了 一个利用物理系统实现深层网络学习和推理的框架。本文对于文章举例的三个系统不属于线性时不变系统进行分析。除了其中SHG系统比较复杂之外,其它两个系统(三极管、扬声器)是如此的简便,吸引人去进行搭建系统,测试一下相应的性能性能。对于参加智能车竞赛的同学来讲,也许将来不再需要借助于复杂高性能单片机来完成神经网络推理,只利用几只三极管便可完成。
关键词 PNN神经网络非线性系统

01 理神经网络

  到最近在 Nature 杂志上发表的一篇文章  Deep Physical Neural Networks Trained with Backpropogation[1] 介绍了利用多层非线性物理系统构建深度学习网络,并通过反向随机梯度下降完成系统训练方法的确令人惊讶毁人三观

  你敢想象利用几只扬声器,或者几只场效应管就可以组成深度物理神经网络(Physical Neural Networks),完成图像分类?分类效果比起传统的数字神经网络也不逊色。对于MNIST手写体数字识别也可达到97%以上。(见下面基于四通道双谐波信号发生器(SHG)方案)

▲ 图1 分别基于机械系统、电子线路、光学系统构建的P物理神经网络

  这类建构在物理系统而非数字处理器之上的神经网络目标是在推理速度和能效方面超过传统数字计算机,构建智能传感器和高效网络推理。

  猜测大多数人和我一样,第一看到这个文章都会有疑问:这类常见到的扬声器、三极管、光学透镜怎么就能够像深度学习网络那样完成学习训练和推理的呢?特别是这其中都是一些常见到的物理系统,这里面并没有包含什么量子计算机、神经计算机之类结构。

  文章包含的工作很多(原文PDF有60多页),我还没有看完,不过文章一开始把为什么物理神经网络能够实现人工神经网络算法的原理还是讲的比较明白。传统的深度学习可以分解若干网络层的级联计算,每一层的计算包括输入数据(Input)、网络参数(Parameters),它们经过融合后经过神经元非线性传递函数形成网络的输出(Output)。

▲ 图2 人工神经网络(ANN)与物理神经网络(PNN) 之间的联系

  物理神经网络也是分成若干层的级联,比如若干个扬声器,每个扬声器是一层神经网络。输入信号是扬声器的输入电压;网络参数则是一组可以控制的电压信号,比如持续时间,幅值可以改变的信号,它们与输入信号通过(叠加、串联等)合并后送入扬声器,扬声器的输出声音再经过麦克风采集形成网络的输出。

▲ 图1.3 由扬声器组成的一层神经网络结构图

  在由晶体管组成的放大电路、光学倍频器(SHG)组成的系中,对于输入信号,网络参数以及它们的融合方法根据各子系统特点有所不同。

  比如在下图中,网络参数实际上就是一段长度和幅值不同的直流信号,嵌入在输入变化的信号中(A),经过三极管电路之后形成输出(B),输入信号和网络参数融合部分进行展开与归一化(C)形成网络输出信号。

▲ 图3 在三极管电路中输入信号网络参数信号(幅值可控一段直流电平)的串联,以及对应的电路输出信号

  尽管现在对于网络如何进行训练,如何进行工作的细节还有待进一步的了解,但文章所展示关于深度神经网络算法的本质令人耳目一新。利用了系统输入输出之间的非线性输入信号与网络信号进行融合完成信息的处理,所以文章所举例的三个系统(扬声器、三极管电路、二次倍频光学系统)都应该不是线性时不变系统。

  下面我们抛开物理神经网络算法,先看看论文中的这三个系统的特点。

02 线性系统

  大学本科阶段所学习的“信号与系统”、“自动控制理论”中所讨论的原理和方法基本上都是针对于线性时不变系统,因此判断一个系统是否是线性时不变是应用这些理论第一步需要做的事情。

  在前面Nature 论文中所提到的三个物理系统(机械、电子、光学)是否都满足线性时不变呢?

2.1 三极管电路

  文章中三极管电路最简单,同样它的非线性也最为明显。

  电路包含有四个元器件:电阻、电感、电容以及场效应三极管。其中电阻、电感、电容都是线性元器件,只有场效应三极管是一个非线性器件。它的漏极饱和电流与栅极电压之间呈现平方关系。所以该电子系统是一个非线性系统。

▲ 图2.1.1 三极管电路

2.2 二次谐波产生系统(SHG)

  二次谐波产生系统 是一个光学系统,也是文章举例中最复杂的系统。

  对于SHG(Second-Harmonic  Generation)光学系统我不是很熟悉,通过 检索相应文献[2] 可以了解到它的基本原理。它利用了 一些特殊的分子物理状态可以将输入光学信号的频率进行倍频,产生对应的二次谐波信号。

▲ 图2.2.1 二次谐波产生系统

  对于这类你不熟悉的物理系统,那么该如何判断它 是否属于线性时不变系统呢?

  在这里我们需要利用线性时不变系统的一个特性:线性时不变系统不会产生新的频率信号

  虽然它可以改变输入信号中不同频率分量的幅度和相位,但不会有新的频率分量产生。SHG光学系统是将输入光谱中所有频率分量都进行倍频,产生了新的倍频分量,因此它不属于线性时不变系统。

  因此,倍频是该系统能够用于完成物理神经系统的关键,一个线性时不变光学系统是无法构建物理神经网络的。

2.3 扬声器

  文章举例的三个系统中,就数扬声器机械振动系统最令人感到扑朔迷离。系统分为扬声器、音频功放、麦克风组成。其中扬声器需要进行改装。

  他们把动圈式喇叭的振动膜和防尘罩拆除,露出音频线圈,在上面使用胶水粘上一个金属螺钉,再固定一个3.2cm×3.2cm见方,1mm厚的金属钽制作的金属片。读到此,你会觉得他们这通骚操作属于脱了裤子放屁,故弄玄虚。

▲ 图2.3.1 利用扬声器制作的机械振荡系统

  原以为他们这么改装应该是想在喇叭机械系统中融入非线性环节,但在音圈(Sound Coil)上增加的金属螺钉和钽片好像仅仅是增加了喇叭线圈惯性质量,对于其中高频振荡进行压制,起到一个低频滤波的作用。因此该系统仍然属于一个线性时不变系统。

  下面是论文补充材料中给出的扬声器输入电压信号,麦克风录音信号以及信号降采样的数字信号。可以看到麦克风录制的音频信号的确是对输入信号的低通平滑滤波。

▲ 图2.3.2 扬声器的输入信号、麦克风录音信号以及降采样数字信号

  下图是文章中给出的输入随机信号中嵌入了幅度可控一段直流信号(相当于网络参数),施加在扬声器上之后,麦克风采集到的音频信号。最后一张图上可以看到在不同时刻对应的输出信号与输入信号之间呈现线性关系。

▲ 图2.3.3 输入随机噪声加上可控直流信号片段噪声的输出信号

  那么问题来了:这个系统中的非线性环节到底在哪儿呢

  现在能够想到的就是其中麦克风信号进行降采样可能会改变系统的线性时不变特性,类似于卷积神经网中的 Pooling 层的作用。

文总结 ※

  自于康纳尔大学的这篇研究论文给出了 一个利用物理系统实现深层网络学习和推理的框架。本文对于文章举例的三个系统不属于线性时不变系统进行分析。除了其中SHG系统比较复杂之外,其它两个系统(三极管、扬声器)是如此的简便,吸引人去进行搭建系统,测试一下相应的性能性能。

  对于参加智能车竞赛的同学来讲,也许将来不再需要借助于复杂高性能单片机来完成神经网络推理,只利用几只三极管便可完成。

参考资料

[1]

Deep Physical Neural Networks Trained with Backpropogation: https://www.nature.com/articles/s41586-021-04223-6.pdf

[2]

检索相应文献: https://www.sciencedirect.com/topics/chemistry/second-harmonic-generation


TsinghuaJoking 这是一个公众号,它不端、不装,与你同游在课下、课上。 卓晴博士,清华大学中央主楼 626A。010-62773349, 13501115467,zhuoqing@tsinghua.edu.cn
评论 (0)
  • ​2025年3月27日​,贞光科技授权代理品牌紫光同芯正式发布新一代汽车安全芯片T97-415E。作为T97-315E的迭代升级产品,该芯片以大容量存储、全球化合规认证、双SPI接口协同为核心突破,直击智能网联汽车"多场景安全并行"与"出口合规"两大行业痛点,助力车企抢占智能驾驶与全球化市场双赛道。行业趋势锚定:三大升级回应智能化浪潮1. 大容量存储:破解车联网多任务瓶颈随着​车机功能泛在化​(数字钥匙、OTA、T-BOX等安全服务集成),传统安全芯片面临存储资源挤占难题。T97-415E创新性
    贞光科技 2025-03-27 13:50 148浏览
  • 在智能语音产品的开发过程中,麦克风阵列的选型直接决定了用户体验的优劣。广州唯创电子提供的单麦克风与双麦克风解决方案,为不同场景下的语音交互需求提供了灵活选择。本文将深入解析两种方案的性能差异、适用场景及工程实现要点,为开发者提供系统化的设计决策依据。一、基础参数对比分析维度单麦克风方案双麦克风方案BOM成本¥1.2-2.5元¥4.8-6.5元信噪比(1m)58-62dB65-68dB拾音角度全向360°波束成形±30°功耗8mW@3.3V15mW@3.3V典型响应延迟120ms80ms二、技术原
    广州唯创电子 2025-03-27 09:23 157浏览
  • 在当今竞争激烈的工业环境中,效率和响应速度已成为企业制胜的关键。为了满足这一需求,我们隆重推出宏集Panorama COOX,这是Panorama Suite中首款集成的制造执行系统(MES)产品。这一创新产品将Panorama平台升级为全面的工业4.0解决方案,融合了工业SCADA和MES技术的双重优势,帮助企业实现生产效率和运营能力的全面提升。深度融合SCADA与MES,开启工业新纪元宏集Panorama COOX的诞生,源于我们对创新和卓越运营的不懈追求。通过战略性收购法国知名MES领域专
    宏集科技 2025-03-27 13:22 189浏览
  • 六西格玛首先是作为一个量度质量水平的指标,它代表了近乎完美的质量的水平。如果你每天都吃一个苹果,有一间水果店的老板跟你说,他们所卖的苹果,质量达到六西格玛水平,换言之,他们每卖一百万个苹果,只会有3.4个是坏的。你算了一下,发现你如果要从这个店里买到一个坏苹果,需要805年。你会还会选择其他店吗?首先发明六西格玛这个词的人——比尔·史密斯(Bill Smith)他是摩托罗拉(Motorloa)的工程师,在追求这个近乎完美的质量水平的时候,发明了一套方法模型,开始时是MAIC,后来慢慢演变成DMA
    优思学院 2025-03-27 11:47 151浏览
  • 在电子设计中,电磁兼容性(EMC)是确保设备既能抵御外部电磁干扰(EMI),又不会对自身或周围环境产生过量电磁辐射的关键。电容器、电感和磁珠作为三大核心元件,通过不同的机制协同作用,有效抑制电磁干扰。以下是其原理和应用场景的详细解析:1. 电容器:高频噪声的“吸尘器”作用原理:电容器通过“通高频、阻低频”的特性,为高频噪声提供低阻抗路径到地,形成滤波效果。例如,在电源和地之间并联电容,可吸收电源中的高频纹波和瞬态干扰。关键应用场景:电源去耦:在IC电源引脚附近放置0.1μF陶瓷电容,滤除数字电路
    时源芯微 2025-03-27 11:19 157浏览
  • 案例概况在丹麦哥本哈根,西门子工程师们成功完成了一项高安全设施的数据集成项目。他们利用宏集Cogent DataHub软件,将高安全设施内的设备和仪器与远程监控位置连接起来,让技术人员能够在不违反安全规定、不引入未经授权人员的情况下,远程操作所需设备。突破OPC 服务器的远程连接难题该项目最初看似是一个常规的 OPC 应用:目标是将高安全性设施中的冷水机(chiller)设备及其 OPC DA 服务器,与远程监控站的两套 SCADA 系统(作为 OPC DA 客户端)连接起来。然而,在实际实施过
    宏集科技 2025-03-27 13:20 109浏览
  • 长期以来,智能家居对于大众家庭而言就像空中楼阁一般,华而不实,更有甚者,还将智能家居认定为资本家的营销游戏。商家们举着“智慧家居、智慧办公”的口号,将原本价格亲民、能用几十年的家电器具包装成为了高档商品,而消费者们最终得到的却是家居设备之间缺乏互操作性、不同品牌生态之间互不兼容的碎片化体验。这种早期的生态割裂现象致使消费者们对智能家居兴趣缺失,也造就了“智能家居无用论”的刻板印象。然而,自Matter协议发布之后,“命运的齿轮”开始转动,智能家居中的生态割裂现象与品牌生态之间的隔阂正被基于IP架
    华普微HOPERF 2025-03-27 09:46 109浏览
  • 在智慧城市领域中,当一个智慧路灯项目因信号盲区而被迫增设数百个网关时,当一个传感器网络因入网设备数量爆增而导致系统通信失效时,当一个智慧交通系统因基站故障而导致交通瘫痪时,星型网络拓扑与蜂窝网络拓扑在构建广覆盖与高节点数物联网网络时的局限性便愈发凸显,行业内亟需一种更高效、可靠与稳定的组网技术以满足构建智慧城市海量IoT网络节点的需求。星型网络的无线信号覆盖范围高度依赖网关的部署密度,同时单一网关的承载设备数量有限,难以支撑海量IoT网络节点的城市物联系统;而蜂窝网络的无线信号覆盖范围同样高度依
    华普微HOPERF 2025-03-24 17:00 237浏览
  • 家电,在人们的日常生活中扮演着不可或缺的角色,也是提升人们幸福感的重要组成部分,那你了解家电的发展史吗?#70年代结婚流行“四大件”:手表、自行车、缝纫机,收音机,合成“三转一响”。#80年代随着改革开放的深化,中国经济开始飞速发展,黑白电视机、冰箱、洗衣机这“新三件”,成为了人们对生活的新诉求。#90年代彩电、冰箱、全自动洗衣机开始大量进入普通家庭,快速全面普及,90年代末,家电产品实现了从奢侈品到必需品的转变。#00年代至今00年代,随着人们追求高品质生活的愿望,常用的电视机、洗衣机等已经远
    启英AI平台 2025-03-25 14:12 90浏览
  • 汽车导航系统市场及应用环境参照调研机构GII的研究报告中的市场预测,全球汽车导航系统市场预计将于 2030年达到472亿美元的市场规模,而2024年至2030年的年复合成长率则为可观的6.7%。汽车导航系统无疑已成为智能汽车不可或缺的重要功能之一。随着人们在日常生活中对汽车导航功能的日渐依赖,一旦出现定位不准确或地图错误等问题,就可能导致车主开错路线,平白浪费更多行车时间,不仅造成行车不便,甚或可能引发交通事故的发生。有鉴于此,如果想要提供消费者完善的使用者体验,在车辆开发阶段便针对汽车导航功能
    百佳泰测试实验室 2025-03-27 14:51 188浏览
  • 在智能终端设备开发中,语音芯片与功放电路的配合直接影响音质表现。广州唯创电子的WTN6、WT588F等系列芯片虽功能强大,但若硬件设计不当,可能导致输出声音模糊、杂音明显。本文将以WTN6与WT588F系列为例,解析音质劣化的常见原因及解决方法,帮助开发者实现清晰纯净的语音输出。一、声音不清晰的典型表现与核心原因当语音芯片输出的音频信号存在以下问题时,需针对性排查:背景杂音:持续的“沙沙”声或高频啸叫,通常由信号干扰或滤波不足导致。语音失真:声音断断续续或含混不清,可能与信号幅度不匹配或功放参数
    广州唯创电子 2025-03-25 09:32 112浏览
  •       知识产权保护对工程师的双向影响      正向的激励,保护了工程师的创新成果与权益,给企业带来了知识产权方面的收益,企业的创新和发明大都是工程师的劳动成果,他们的职务发明应当受到奖励和保护,是企业发展的重要源泉。专利同时也成了工程师职称评定的指标之一,专利体现了工程师的创新能力,在求职、竞聘技术岗位或参与重大项目时,专利证书能显著增强个人竞争力。专利将工程师的创意转化为受法律保护的“无形资产”,避免技术成果被他人抄袭或无偿使
    广州铁金刚 2025-03-25 11:48 181浏览
  • 在嵌入式语音系统的开发过程中,广州唯创电子推出的WT588系列语音芯片凭借其优异的音质表现和灵活的编程特性,广泛应用于智能终端、工业控制、消费电子等领域。作为该系列芯片的关键状态指示信号,BUSY引脚的设计处理直接影响着系统交互的可靠性和功能拓展性。本文将从电路原理、应用场景、设计策略三个维度,深入解析BUSY引脚的技术特性及其工程实践要点。一、BUSY引脚工作原理与信号特性1.1 电气参数电平标准:输出3.3V TTL电平(与VDD同源)驱动能力:典型值±8mA(可直接驱动LED)响应延迟:语
    广州唯创电子 2025-03-26 09:26 204浏览
  • WT588F02B是广州唯创电子推出的一款高性能语音芯片,广泛应用于智能家电、安防设备、玩具等领域。然而,在实际开发中,用户可能会遇到烧录失败的问题,导致项目进度受阻。本文将从下载连线、文件容量、线路长度三大核心因素出发,深入分析烧录失败的原因并提供系统化的解决方案。一、检查下载器与芯片的物理连接问题表现烧录时提示"连接超时"或"设备未响应",或烧录进度条卡顿后报错。原因解析接口错位:WT588F02B采用SPI/UART双模通信,若下载器引脚定义与芯片引脚未严格对应(如TXD/RXD交叉错误)
    广州唯创电子 2025-03-26 09:05 146浏览
  • 文/陈昊编辑/cc孙聪颖‍2025 年,作为中国实施制造强国战略第一个十年计划的关键里程碑,被赋予了极为重大的意义。两会政府工作报告清晰且坚定地指出,要全力加速新质生产力的发展进程,推动传统产业全方位向高端化、智能化与绿色化转型。基于此,有代表敏锐提议,中国制造应从前沿技术的应用切入,逐步拓展至产业生态的构建,最终延伸到提升用户体验的维度,打出独树一帜、具有鲜明特色的发展牌。正是在这样至关重要的时代背景之下,于 AWE 2025(中国家电及消费电子博览会)这一备受瞩目的舞台上,高端厨房的中国方案
    华尔街科技眼 2025-03-25 16:10 85浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦