2021年度中国半导体十大研究进展

半导体产业纵横 2022-01-30 18:00



2020年,《半导体学报》启动了第一届“中国半导体十大研究进展”评选活动,旨在遴选我国在半导体基础研究领域的年度标志性成果,获得了广泛关注。


2021年,第二届“中国半导体十大研究进展”评选活动共有46项成果获得候选推荐资格。2022年1月,由77位半导体领域专家组成的评选委员会经过严格评审,选出10项优秀成果,荣膺2021年度“中国半导体十大研究进展”。同时,有11项成果荣获2021年度“中国半导体十大研究进展”提名奖。


 获奖名单     

     

01.黑砷半导体的Rashba能谷调控与量子霍尔效应

浙江大学许祝安、郑毅团队与中南大学夏庆林合作,首次在直接带隙半导体黑砷的二维电子态中发现了外电场连续、可逆调控的强自旋轨道耦合效应,并报道了全新的自旋-能谷耦合的Rashba物理现象及其反常的量子化行为,为高效率、低能耗自旋电子器件研制和拓扑量子计算的研究提供了新的思路。


该成果发表于《自然》杂志(Nature, 2021, 593: 56–60)。



黑砷中的Rashba能谷调控与量子霍尔器件。


02.二维半导体单晶晶圆的可控制备


北京大学物理学院叶堉研究员课题组提出了一种人工育种,利用相变和重结晶过程制备晶圆尺寸单晶半导体相碲化钼(MoTe2)薄膜的新方法。该二维平面内外延技术,无需以衬底为模板,可以直接在器件基底上实现二维半导体单晶晶圆的可控制备,为二维半导体材料的层间互连提供材料基础。


该成果发表于《科学》杂志(Science, 2021, 372(6538): 195–200)。



晶圆尺寸单晶MoTe2薄膜的晶向表征。


03.探测半导体界面晶格动力学的新谱学方法


北京大学量子材料科学中心高鹏研究组基于扫描透射电子显微镜发展了四维电子能量损失谱技术,突破了传统谱学手段难以在纳米尺度表征晶格动力学的局限,首次实现了半导体异质结界面处局域声子模式的测量。该方法可以直接测量局域声子模式的空间分布和色散关系,从而理解界面热导率和载流子迁移率等物理性质。


该成果发表于《自然》杂志(Nature, 2021, 599: 399–403)。




四维电子能量损失谱测量界面晶格动力学:(a)实验原理示意图;(b)实验测得的声子局域态密度空间分布;(c)界面模式的色散关系。

  

04.全柔性织物显示系统


复旦大学彭慧胜/陈培宁团队突破传统电子器件三明治结构模型的研究范式,提出在高分子复合纤维交织点构建微型发光器件的新路线,通过解决活性材料在纤维上无法均匀负载和交织界面稳定低的难题,创制出集显示、供能等功能于一体的全柔性织物显示系统,实现了器件制备与织物编织的有机融合,在柔性电子领域开拓出一个新方向。


该成果发表于《自然》杂志(Nature, 2021, 591: 240–245)。


(a) 织物结构示意图,发光经线和导电纬线在施加电压情况下,交织区域的发光材料受激发而发光;(b),(c) 分别为多色发光织物和发光点照片。

  

05.基于吸收型量子存储器的多模式量子中继


中国科学技术大学郭光灿院士团队李传锋、周宗权研究组首次基于吸收型量子存储器建立量子中继的基本链路,基于独创的“三明治”结构固态量子存储器,成功演示了多模式的量子中继。该成果为后续的量子中继研究开创了一个可行的方向,目前团队正在开发与硅基器件结合的量子存储技术,未来有望进一步实现可集成的量子网络。


该成果以封面故事论文的形式发表于《自然》杂志(Nature, 2021, 594: 41–45)。


多模式量子中继实验的艺术化示意图。


06.基于同质器件架构的感算存一体化神经形态硬件


华中科技大学叶镭、缪向水团队和中科院上海技术物理研究所胡伟达团队等合作,创新性地基于二维半导体的硅基同质器件,首次提出了类脑功能的“传感-计算-存储一体化”神经形态芯片架构,实现了光电传感、放大运算、信息存储功能的一体化集成,为突破冯·诺依曼瓶颈和实现类脑智能提供了一种全新思路。


该成果发表于《科学》杂志(Science, 2021, 373(6561): 1353–1358)。


类脑功能的感-算-存一体化片上集成硬件。

 

07.室温和高湿度下稳定的α-FAPbI3钙钛矿及其高效稳定光伏器件


南京工业大学黄维院士、陈永华教授团队创造性地在室温、高湿度下(大于90%)稳定了α-FAPbI3钙钛矿半导体,首次提出了基于甲酸甲胺离子液体溶剂,生长出取向排列且具有纳米级“离子通道”的碘化铅薄膜,实现了稳定α-FAPbI3快速形成。未封装的器件在85 °C持续加热和持续光照下,分别保持其初始效率的80%和90%达500小时。


该成果发表于《科学》杂志(Science, 2021, 371(6536): 1359–1364)。


甲酸甲胺离子液体溶液、碘化铅“离子通道”及光伏器件稳定性。

 

08.高亮度轨道角动量单光子固态量子光源


中山大学王雪华、刘进研究团队通过将量子点精确地集成在带有角向光栅的微环腔的波幅位置、并结合超低吸收的零场镜面高反结构,同时实现了单光子的发射增强和轨道角动量的高效提取,在国际上率先实现了可携带轨道角动量的高亮度固态单光子源,有望为高维量子信息处理提供小型化、可集成、易扩展的半导体核心光量子器件。


该成果发表于《自然-纳米技术》杂志(Nature Nanotechnology, 2021, 16(3): 302–307)。


基于量子点-微环腔耦合的高亮度轨道角动量单光子源。

 

09.超宽禁带氮化物半导体材料高效p型掺杂


中科院长春光学精密机械与物理研究所黎大兵研究团队与中科院半导体研究所邓惠雄研究员合作,围绕宽禁带氮化物材料p型掺杂的国际难题,针对超高受主激活能的根本物理限制,提出了量子工程非平衡掺杂调控价带顶能级位置从而大幅降低激活能的方法,实现了高空穴浓度p型超宽禁带氮化物材料,为解决宽禁带半导体掺杂问题提供了新思路,有望推动宽禁带半导体产业进一步发展。


该成果发表于《光:科学与应用》杂志(Light: Science & Applications, 2021, 10: 69)。


量子工程非平衡掺杂降低受主激活能物理机制及其在深紫外LED中的应用。

 

10.硅基片上一体化集成的高能效电容型感知芯片


电容型感知芯片是工业互联网和万物智联时代的数据感知基础设施,北京大学黄如、叶乐研究团队实现了基于国产硅基CMOS工艺的片上一体化集成的动态电荷域高能效电容型感知芯片,通过首次提出的动态电荷域功耗自感知技术和动态范围自适应滑动技术,显著提高了数据感知的能效,解决了复杂工作环境导致的性能退化和可靠性问题,演示了环境湿度感知应用,打破了同类芯片的世界能效记录和国外卡脖子封锁。


该成果发表于集成电路设计国际顶级期刊JSSC(IEEE Journal of Solid-State Circuits, 2021, 56(12): 3560–3572)。



(a)硅基片上一体化集成的高能效电容型感知芯片的顶视显微照片;(b)该芯片的国产CMOS晶圆照片;(c)硅基片上一体化集成的电容型湿度传感器顶视显微照片;(d)电路板演示系统及湿度测试演示。


 获奖名单     

        

(点击成果名称即可查看详情;排名不分先后)


01. 基于阵列碳纳米管的射频晶体管

成果论文:Radiofrequency transistors based on aligned carbon nanotube arrays. Nature Electronics, 2021, 4: 405–415

论文作者:Huiwen Shi, Li Ding, Donglai Zhong, Jie Han, Lijun Liu, Lin Xu, Pengkun Sun, Hui Wang, Jianshuo Zhou, Li Fang, Zhiyong Zhang, and Lian-Mao Peng


02. 迄今最高并行度的神经形态计算方案

成果论文:Scalable massively parallel computing using continuous-time data representation in nanoscale crossbar array. Nature Nanotechnology, 2021, 16: 1079–1085

论文作者:Cong Wang, Shijun Liang, Chenyu Wang, Zaizheng Yang, Yingmeng Ge, Chen Pan, Xi Shen, Wei Wei, Yichen Zhao, Zaichen Zhang, Bin Cheng, Chuan Zhang, and Feng Miao


03. 系统、高性能、多级集成的氮化镓基互补型逻辑电路

成果论文:Gallium nitride-based complementary logic integrated circuits. Nature Electronics, 2021, 4: 595–603

论文作者:Zheyang Zheng, Li Zhang, Wenjie Song, Sirui Feng, Han Xu, Jiahui Sun, Song Yang, Tao Chen, Jin Wei, and Kevin J. Chen


04. 柔性集成偏振敏感放大系统

成果论文:Integrated polarization-sensitive amplification system for digital information transmission. Nature Communications, 2021, 12: 6476

论文作者:Wenhao Ran, Zhihui Ren, Pan Wang, Yongxu Yan, Kai Zhao, Linlin Li, Zhexin Li, Lili Wang, Juehan Yang, Zhongming Wei, Zheng Lou, and Guozhen Shen


05. 高性能半导体魔角激光器

成果论文:Magic-angle lasers in nanostructured moiré superlattice. Nature Nanotechnology, 2021, 16(10): 1099–1105

论文作者:Xinrui Mao, Zengkai Shao, Hongyi Luan, Shaolei Wang, and Renmin Ma


06. 纳米自组装半导体超晶格电子-声子强相互作用与自陷态辐射

成果论文:Zone-folded longitudinal acoustic phonons driving self-trapped state emission in colloidal CdSe nanoplatelet superlattices. Nano Letters, 2021, 21(10): 4137–4144

论文作者:Xinyu Sui, Xiaoqing Gao, Xianxin Wu, Chun Li, Xuekang Yang, Wenna Du, Zhengping Ding, Shengye Jin, Kaifeng Wu, Tze Chien Sum, Peng Gao, Junjie Liu, Xiaoding Wei, Jun Zhang, Qing Zhang, Zhiyong Tang, and Xinfeng Liu


07. 可演化AI芯片

成果论文:Evolver: A deep learning processor with on-device quantization-voltage-frequency tuning. IEEE Journal of Solid-State Circuits, 2021, 56(2): 658–673

论文作者:Fengbin Tu, Weiwei Wu, Yang Wang, Hongjiang Chen, Feng Xiong, Man Shi, Ning Li, Jinyi Deng, Tianbao Chen, Leibo Liu, Shaojun Wei, Yuan Xie, and Shouyi Yin


08. “孪生碳氮、氢氧共济”:高效Z型光催化分解纯水体系构建新思路

成果论文:Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nature Energy, 2021, 6: 388–397

论文作者:Daming Zhao, Yiqing Wang, Chungli Dong, Yucheng Huang, Jie Chen, Fei Xue, Shaohua Shen, and Liejin Guo


09. 钙钛矿半导体多晶薄膜“埋底界面”的创新研究方法

成果论文:Buried interfaces in halide perovskite photovoltaics. Adv Mater, 2021, 33(7): 2006435

论文作者:Xiaoyu Yang, Deying Luo, Yuren Xiang, Lichen Zhao, Miguel Anaya, Yonglong Shen, Jiang Wu, Wenqiang Yang, Yu‐Hsien Chiang, Yongguang Tu, Rui Su, Qin Hu, Hongyu Yu, Guosheng Shao, Wei Huang, Thomas P. Russell, Qihuang Gong, Samuel D. Stranks, Wei Zhang, and Rui Zhu


10. 室温半导体微纳器件中热电子的绝热输运

成果论文:Quasiadiabatic electron transport in room temperature nanoelectronic devices induced by hot-phonon bottleneck. Nature Communication, 2021, 12: 4752

论文作者:Qianchun Weng, Le Yang, Zhenghua An, Pingping Chen, Alexander Tzalenchuk, Wei Lu, and Susumu Komiyama


11. 首次实现氮化物半导体二维电子气中自旋的电学注入

成果论文:Electrical spin injection into the 2D electron gas in AlN/GaN heterostructures with ultrathin AlN tunnel barrier. Advanced Functional Materials, 2021, 31: 2009771

论文作者:Xiaoyue Zhang, Ning Tang, Liuyun Yang, Chi Fang, Caihua Wan, Xingchen Liu, Shixiong Zhang, Yunfan Zhang, Xinqiang Wang, Yuan Lu, Weikun Ge, Xiufeng Han, and Bo Shen


*声明:本文系原作者创作。文章内容系其个人观点,我方转载仅为分享与讨论,不代表我方赞成或认同,如有异议,请联系后台。





半导体产业纵横 (微信号: ICViews)半导体产业纵横是神州数码数智创新+平台下的自媒体账号,立足产业视角,提供及时、专业、深度的前沿洞见、技术速递、趋势解析,赋能中国半导体产业,我们一直在路上。
评论
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 321浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 156浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 85浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 190浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 117浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 68浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 205浏览
  • 百佳泰特为您整理2025年1月各大Logo的最新规格信息,本月有更新信息的logo有HDMI、Wi-Fi、Bluetooth、DisplayHDR、ClearMR、Intel EVO。HDMI®▶ 2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新规范将支持更高的分辨率和刷新率,并提供更多高质量选项。更快的96Gbps 带宽可满足数据密集型沉浸式和虚拟应用对传输的要求,如 AR/VR/MR、空间现实和光场显示,以及各种商业应用,如大型数字标牌、医疗成像和
    百佳泰测试实验室 2025-01-16 15:41 189浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 149浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 120浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 9浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 0浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦