霉菌试验

可靠性杂坛 2019-12-26 11:16


一、概述

霉菌是在自然界分布很广的一种微生物,它广泛存在于土壤、空气中。

霉菌试验是气候环境试验中的一个项目,用于考核产品或材料抵抗霉菌侵蚀的能力。它与一般环境试验一样,选择产品在实际运输、存储或使用过程中最易遭受霉菌危害的环境条件,在实验室中用人工模拟的方法创造该环境条件并进行试验。

霉菌试验用于确定:

(1)设备或组件是否长霉;

(2)霉菌在设备上的生长速度;

(3)霉菌在设备上生长后对装备及其任务完成和使用安全性的影响;

(4)设备能否在环境中有效存储;

(5)若有霉菌生长,有无简单的去除方法。

霉菌试验是确保设计和制造的设备符合防霉要求的最有效手段。尽管设计时已考虑使用防霉材料,但往往不可能完全避免长霉,必须进行霉菌试验,检验其是否真正符合要求。对于尚在研制过程中的产品,霉菌试验的结果可作为改进产品耐霉菌设计的依据,对于设计定型的产品,霉菌试验可作为产品是否符合设计要求、是否能通过设计定型的一个依据,当然也可为日后的改进设计提供信息。

为确定产品抗霉菌侵蚀的能力,必须制定一个与实际工作条件相似并能判断霉菌的侵蚀作用及给出正确评价的试验方法。为产品的选材、结构和设计提供依据,以保证产品能在有大量霉菌存在的气候环境中安全可靠地运行。

二、霉菌试验的标准

1.霉菌试验的标准

目前,许多国家都制定了霉菌试验标准。这些标准基本上分为 3 个类型,第一类是明确只用于设备一级的标准,第二类是明确只用于材料一级的标准,第三类是设备和材料混用的标准,具体如表1所示。



表1 国内外霉菌试验标准及其比较

2.霉菌试验标准适用性

由于霉菌试验目的不同,适用的试验方法也不相同,GJB 150 及 MIL-STD-810E 明确指出,该试验是要得到设备对霉菌的敏感性数据,不能用于基本材料的试验。材料的长霉试验可用更为严酷的其他方法,如温床土埋、纯净培养、混合培养和培养皿等进行。从表2-43中可以看出,除 MIL-STD-810 和 GJB 150 以外,还有美国 RTCA DO 160C,我国的 HB 6167、HB 5830,国际电工委员会IEC 68-2-10A号出版物,GB 2423、英国标准DEF STAN 07—55、法国标准AIR 7304、俄罗斯国家标准ΓOCT 20.57—406等均适用于设备一级。这些标准实际上可进一步分为美国和欧洲两个体系,美国标准体系均是采用 5 个菌种,而欧洲体系采用 8 个菌种。试验的其他参数差异不大。俄罗斯标准的特别之处是规定也可用于设备和材料的霉菌试验。HB 5830制定时受到GB 2423的影响,也做了适用于材料试验的规定。

各国也有一些专门用于材料的霉菌试验标准,如美国标准 AST M3273、日本标准JIS 2911、GB 1741 等,这些标准在试验菌种、培养方式、试验条件及试验时间等方面均与MIL-STD-810E规定的不同,如风速一般在0.2m/s以下,总体来说,其试验条件要比设备试验方法标准严酷。

尽管材料的霉菌试验一般采用培养皿法,且试验条件要比设备试验严酷,但材料霉菌试验并不能取代设备的霉菌试验,因为即使设备使用了各种通过霉菌试验的材料,但由于用这些材料制成的设备,结构难免会积水或藏尘,且在制造过程中会受到各种污染,因而仍然会长霉和受到各种霉菌的侵蚀,故有必要进行GJB 150和MIL-STD-810E规定的实验室试验或自然环境试验来验证设备的抗霉能力。由于实验室试验是用工程简化方法进行的试验,用它对设计不良或选材不合适的设备进行试验时,虽然可以得到组成该设备的材料长霉情况的一些有用信息,但不可能找到其使用中可能遇到的所有故障源。

三、霉菌试验的方法及技术

1.试验方法

本文主要介绍 GJB 150.10A—2009《军用设备环境试验方法霉菌试验》标准的试验方法及实施步骤。

本试验涉及高度专业化的技术,并含有具有潜在危害的微生物。只有具备专业技术资格的人(如微生物专家)才能进行本试验。进行本试验所需的安全性信息见GB/T 2423.16—1999。

1)限制

本试验不适用于基体材料的检测,基体材料的检测应采用其他材料检测方法,如土埋、纯培养、混合培养平板试验等方法。

2)选择试验方法

分析有关技术文件的要求,应用产品订购过程中实施GJB 4239得出的结果,确定设备寿命期内霉菌生长环境出现的阶段,根据下列环境效应确定是否需要进行本试验。当确定需要进行本试验,且本试验与其他环境试验使用同一试件时,还需确定本试验与其他试验的先后顺序。

3)特殊要求

本试验一般不适宜在事先做过盐雾、砂尘湿热试验的试件上进行。如果需要,可在盐雾或砂尘试验前做霉菌试验。大量聚集的盐分会影响霉菌的发芽和生长,而砂尘能为霉菌提供养分。因此,可能对试件的生物敏感性造成假象。

4)选择试验程序

本试验只有一个程序。由于温度和湿度的组合对微生物的生长很关键,因此,应按照本试验的规定保持试验时的温、湿度条件。

5)确定试验条件

(1)试验持续时间

霉菌试验的最短持续时间为 28 天(霉菌发芽、分解含碳分子及降解材料的最短时间是28 天)。由于长霉对试件产生的间接侵蚀和物理影响不可能在较短的试验持续时间内出现,如果要求在确定长霉对试件的影响方面需要提高确定度或降低风险时,则应考虑将试验时间延长至84天。

(2)霉菌菌种选择

表2中列出两组常用的霉菌菌种。试验时应选择其中一组,如需要还可以对菌种进行调整。这些菌种是按照对其材料的降解能力、在地球上的分布状况及其本身稳定性来选定的。表2中所列菌种都相应表明了侵蚀的材料种类,如有需要可在已选定其中一组菌种的基础上额外增加菌种。

· 试件在试验前无须灭菌,试件表面可能存在其他微生物。试验期间这些微生物会与试验菌种争夺养分。因此,试验结束时试件上可能会有非试验用菌种的生长。

· 可在试验要求的菌种中加入其他霉菌菌种。增加的菌种应按其对材料的降解情况来选择。




表2 试验可选用的菌种组别何种类

2.试验信息要求

1)试验前需要的信息

(1)菌种组的选择。

(2)要增加的菌种。

(3)试件是否清洁及清洁方法。

2)试验中需要的信息

(1)记录随时间变化的试验箱温度和相对湿度。

(2)在7天时检查棉布对照条上霉菌生长情况的记录。

3)试验后需要的信息

(1)试验结束时霉菌生长情况的记录。

(2)描述霉菌的生长情况,包括颜色、覆盖面积、生长形式和生长密度(若可能则拍照),如表3所示。

(3)霉菌对试件性能或使用的影响如下:

① 试件从试验箱取出时的情况;

② 在去除霉菌后的情况(若适合);

③ 生理或审美的考虑。

(4)有助于故障分析的观察资料。



表3 外观影响的评定

3.试验要求

1)试验设备

(1)试验箱

试验箱和附件的结构应防止冷凝水滴落在试件上。试验箱通过带过滤功能的通气孔与大气相连,既能防止试验箱内的压力增大,又能防止向大气排放霉菌孢子。

(2)传感器

使用不受冷凝影响的湿度测量系统或传感器来检测和控制试验箱内的湿度。控制试验箱环境的传感器与记录湿度和温度的传感器应分开。

(3)风速

流经湿度传感器的风速至少为 4.5m/s。流经试件和对照条附近的风速应控制在 0.5~1.7m/s。如果需要,则在试件周围安置折向装置或滤网。湿度传感器应安装在不受风扇发动机热影响的地方。

2)试验控制

(1)相对湿度

应使用不受水冷凝影响的固态传感器或等效的方法(如快速响应的干湿球传感器)测定相对湿度,不要使用对冷凝敏感的氯化钾传感器,同时还要注意:

① 当使用湿球控制方法时,清洁湿球组件,每次试验都装上新纱布条;

② 为了在传感器上获得测量湿球温度所必需的蒸发,应确保流经湿球的风速不小于4.5m/s;

③ 因为来自风扇发动机的热可能影响温度读数,因此,不要在靠近用于满足要求的风扇或送风器的散热处安装湿球和干球传感器。

(2)空气流通

保持空气在试件周围的自由流动,并使支撑试件的支架与试件的接触面积维持最小。

(3)水汽

不要将水汽直接导入试验箱工作空间内,因为它对试件和微生物活性肯可能产生不利影响。

(4)试剂和水

本部分试验所用试剂和水的要求如下:

① 使用合格的试剂。

② 本部分提到的水均指符合GJB 150.1A—2009中3.2规定的蒸馏水或相同纯度的水。

3)试验中断

与其他环境试验不同,霉菌试验涉及活的微生物。如果试验中断,应考虑涉及活性微生物的实际情况。

如果中断出现在试验的最初10天,则使用新的试件或清洁过的相同试件重做实验。

如果中断出现在试验的后期,则检查试件长霉的情况。若试件已长霉,则不必重新试验;若棉布对照条存在活菌,但无迹象显示试件长霉,则按下面给出的指导进行处理。

(1)温度降低。试验箱的温度降低一般会延缓霉菌生长。如果相对湿度不变,则重新建立试验条件,然后从温度降低到规定允差之下的时间点继续试验;否则,按(3)的规定执行。

(2)温度升高。升高的温度可能会显著影响霉菌的生长。如果下列其中一条出现,则要求从头开始重新试验,否则重新建立试验条件并从中断点处继续试验。

① 温度超过40℃。

② 温度超过31℃达4h或以上。

③ 在对照条上生长的霉菌出现衰退。

(3)湿度降低。如果下列其中一条出现,则从头开始重新试验,否则重新建立试验条件并从中断点处继续试验。

① 相对湿度低于50%。

② 相对湿度低于70%达4h或以上。

③ 在对照条上生长的霉菌出现衰退。

4)去污染

暴露于霉菌试验后的试验设备和试件应进行去污染处理。

4.试验过程

1)试验准备

(1)试验前准备

试验开始前,根据有关文件确定试件的技术状态、持续时间、菌种、存储/工作的参数量值等。

(2)试件预处理

最好用新的试件,也可用做过其他试验的试件。若要求清洁试件,则应在清洁完成后至少72h再开始试验,以使发挥物质蒸发。清洁试件采用典型的方法。

(3)试验中灭菌处理

霉菌试验中的灭菌也是保证试验结果重现性的一个重要因素。灭菌的彻底与否直接影响试验结果的准确度。若霉菌试验灭菌不彻底,则会造成判别上的失误,影响试验结果,造成不必要的浪费。

霉菌试验的灭菌主要分为 3 个阶段:对试验前准备工作所用到的玻璃器皿、仪器、使用的工具(如刀、剪、接种针等)进行灭菌;喷菌前,对试验空间、设备进行灭菌;试验结束后对所有用过的器具、物品都要进行灭菌。

灭菌方法主要有热力灭菌、化学灭菌、物理灭菌。3 种方法在一个试验过程中往往是交叉使用。一般对孢子悬浮液、菌种、培养基等采用热力灭菌;对环境及试验设备、仪器,则化学和物理灭菌并用,以便彻底灭菌。

(4)指导信息

下列指导信息有助于实施本试验。

① 应选择对装备上多数材料具有侵蚀能力的菌种组。如果需要,可以添加其他菌种。

② 应由专业人员在专业实验室内进行。

③ 孢子发芽和生长需要潮湿环境。当环境空气的湿度超过 70%时,霉菌孢子开始发芽和生长;相对湿度高于这个数值时,如90%~100%,霉菌的发芽和生长还会变得更快。

④ 棉布对照条用于:

· 验证接种液中所用霉菌孢子的活性;

· 验证试验箱内的环境适宜霉菌生长的程度。

⑤ 材料和部件的霉菌试验不能完全代表其所构成装备的霉菌生长情况,因此,如需要产品长霉的全面信息,应用整机进行本实验。

⑥ 菌种保藏在6℃±4℃不超过4个月,在此期间应再进行接种并作为新的保藏菌种。

⑦ 每次试验最好使用新鲜制备的孢子悬浮液。若孢子悬浮液不是新鲜制备的,则其在6℃±4℃保藏时间不超过1天。

(5)无机盐溶液的制备

使用清洁器皿,按表4制备无机盐溶液,并使溶液的pH值保持在6.0~6.5。


表4 无机盐溶液成分

(6)混合孢子悬浮液的制备

混合孢子悬浮液制备的要求与过程如下:

① 使用无菌技术制备至少包含规定的试验菌种的孢子悬浮液。

② 将纯菌种分别培养在合适的培养基上(如马铃薯葡萄琼脂),而球毛壳霉应在无机盐琼脂表面的滤纸上进行培养。无机盐琼脂的配制方法如下:将15.0g琼脂溶解在规定的1L无机盐溶液中。

③ 试验前检查菌种的纯度。

④ 制备保藏纯菌种的次级培养菌种,并在30℃±1℃培养10~21天。

⑤ 向每种次级培养菌种的试管中注入每升含0.05g无毒润湿剂的水溶液10mL。

⑥ 用无菌玻璃圆棒、铂丝或镍铬丝在试验菌种的表面轻刮。

⑦ 将孢子提取液注入 125mL 带盖锥形瓶,瓶内装 45mL 水、50~70 粒直径为 5mm 的实心玻璃球。

⑧ 剧烈振荡锥形瓶,以打碎孢子,从菌丝体中释放出来。

⑨ 用装有 6mm 厚玻璃棉的玻璃漏斗,将霉菌孢子悬浮液过滤到锥形瓶中,以去除打碎的菌丝体碎片和琼脂块。

⑩ 将过滤后的孢子悬浮液离心,弃掉上层液。在剩余物中加入50mL水重新悬浮并离心。将获得的每种霉菌孢子至少以这种方法离心3次(直到上层液变清)。用无机盐溶液稀释已离心的最后剩余物,通过计数器计算,最终使得每升孢子悬浮液含有1000000×(1±20%)个孢子。对试验用的每一种菌种孢子进行活力检验。将相等容积的每种孢子悬浮液混合,得到最后的混合孢子悬浮液。

(7)验证试验

本试验应进行两种验证试验,以检查孢子悬浮液的活力,以及试验箱环境是否适合霉菌生长。

孢子悬浮液的活力试验步骤如下:

① 在制备混合孢子悬浮液前,将 0.2~0.3mL 的每种霉菌孢子悬浮液分别接种在无菌的马铃薯葡萄糖或其他琼脂平板上,每种菌种使用单独的琼脂平板。

② 将接种液涂于琼脂平板的整个表面。

③ 接种后的琼脂平板在30℃±1℃的培养箱内培养7~10天。

④ 培养结束后检查霉菌的生长。

任何一种试验菌种在各平板的整个表面没有出现大量生长,都证明使用这些菌种孢子所进行的试验无效。

试验箱内环境试验步骤如下:

① 按规定制备溶液,并用HCl和NaOH调节最终溶液的pH值到5.3。

② 将未漂白的普通100%棉布剪成约3cm宽的长条制备对照条。只使用不含防霉剂、憎水剂和浆料添加剂的棉布条。去除棉布条上的任何处理材料,建议将其用蒸馏水煮沸,然后将棉布条浸入表5所示的溶液中,应确保棉布条已彻底湿润,浸透后除去棉布条上的多余液体,在放入试验箱接种前悬挂晾干。

③ 在试验箱内将对照条靠近试件垂直悬挂,确保对照条和试件经受相同的试验环境。对照条的长度至少要与试件的高度相等。

④ 为了确保试验箱内的正确条件以促进霉菌生长,应放置 3 件对照条并和试件一起接种。



表5 溶液成分

(8)初始检测

试验前所有试件均需在标准大气条件下进行检测,以取得基线数据。检测应按以下步骤进行。

① 记录试验室内的大气条件。

② 对试件进行全面的外观目视检查,记录检查结果(若需要,可照像)。

③ 如需要,按技术文件的要求对试件做工作性能检测,并记录检测结果。若试件工作正常,则继续进行后续的试验程序;若试件工作不正常,则应解决问题,并重新对试件进行初始检测,直到正常为止。

2)试验程序

试验程序按以下步骤进行:

(1)将试件按照要求的技术状态安装在试验箱内合适的支架上或进行悬挂。

(2)在接种前将试件放置在工作中的试验箱内(温度为 30℃±1℃、相对湿度为95%±5%)至少4h。

(3)通过喷雾器将混合孢子悬浮液以很细的薄雾喷在棉布对照条上以及试件表面和里面(若非永久密封或气密密封)进行接种。应在对试件有适当了解的人员帮助下暴露试件的内表面并对其进行接种。

(4)为了使空气能进入试件的内部,在复位试件的外壳时不要上紧紧固件。

(5)接种后立即开始试验培养。

在使用混合孢子悬浮液对试件和对照条喷雾时,喷雾要覆盖试件在使用或维修期间暴露的所有外表面和内表面,若表面未湿润,则继续喷雾直到液滴在表面开始形成为止。

(6)除(7)和(8)两个步骤外,在恒定温度 30℃±1℃、相对湿度 95%±5%的条件下进行试验(至少28h)。

(7)在试验 7 天后,检查对照条的霉菌生长以确定试验箱内的环境适合霉菌生长。此时与试件处于同一水平位置的每个对照条应至少有 90%的表面被霉菌覆盖。否则,调节试验箱到所要求的适合霉菌生长的条件后重新开始整个试验。在试验期间对照条留在试验箱内。

(8)若在试验 7 天后对照条 90%以上的表面出现霉菌生长,则继续试验直到试验所要求的时间为止。若在试验结束时与试验 7 天时相比对照条上霉菌的生长没有增加,则说明本次试验无效。

(9)在试验结束时应立即检查试件。如果可能,则在试验箱内进行检查。在试验箱外的检查如果不能在8h内完成,则应将试件放回试验箱内或相似潮湿环境中至少12h。除气密性装备外,应打开试件外壳并检查试件的内部和外部。记录检查结果。

(10)如果试验后要求检测试件(如电子系统)的工作性能,则在(9)规定的检查期间使试件工作。检查时应有对试件有适当了解的人员在场,以帮助暴露试件内部进行检查,以及使试件工作和使用。在工作检查时任何对霉菌生长造成的干扰都必须保持在最小程度。

3)结果分析

除GJB 150.1A—2009中3.17的指南外,下列信息也有助于评价试验结果。

(1)在试件上生长的任何霉菌必须进行分析,以确定霉菌是生长在试件材料上还是生长在污染物上。

(2)在试件生长的任何霉菌,无论来自接种液还是其他来源,都必须由具备资格的人员进行如下评价:

① 敏感元件或材料上霉菌生长的程度,但任何霉菌生长都必须进行完整描述;

② 霉菌生长对装备物理特性的直接影响;

③ 霉菌生长对装备的长期影响;

④ 支持霉菌生长的特定材料(养分)。

四、霉菌试验实施案例

1.案例1

图 1所示的产品为连接器组件,按 GJB 150.10—2009 中菌种组 2 组进行霉菌试验,试验周期为 28 天,试验评定结果为长霉等级 3 级。对产品进行分析,确定主要霉菌中度生长的主要原因是产品选用的热熔胶防霉等级达不到要求。


图1

2.案例2

图 2所示的产品为矩形连接器,按 GJB 150.10—2009 中菌种组 2 组进行霉菌试验,试验周期为28天,试验评定结果为长霉等级2级。


图2

3.案例3

图 3所示的产品为模块电路,按 GJB 150.10—2009 中菌种组 2 组进行霉菌试验,试验周期为 28 天,试验评定结果为长霉等级 1 级。该产品四周及顶部均无霉菌生长,但产品底部选用的白色固封胶体微量长霉,从而影响整个产品的防霉等级。


图3

五、霉菌试验技术的发展趋势

霉菌试验是考核产品或材料抗霉菌能力的重要手段,试验结果的科学性、合理性至关重要。目前霉菌标准给出了一般情况下试验条件的推荐值,如无其他规定,可按照试验程序进行试验,但实际产品在使用过程中经常面对不同的环境。因此,未来霉菌试验应考虑依据产品在实际环境和场所确定不同的菌种、试验温度、试验风速和试验周期来确定试验条件,从而更好地验证产品的环境适应性。

霉菌试验后对长霉颜色、覆盖的面积、生长的形式、生长的密度和分布状态等等等级的评价,基本上是依靠检验人员的经验判断给出结论,人为因素起到很大的作用,试验结果的等级判断差异很大。因此,在试验结果的判定上引入数字显微技术,规范和量化试验结果,减少接触时间,提高判断的准确性。



长按二维码识别关注我们


可靠性杂坛 本平台以推广可靠性相关知识为宗旨,内容涵盖可靠性基础知识、电子装联工艺可靠性、失效物理分析和故障预测与健康管理PHM等方面内容。文章以原创为主,打造精品可靠性专业交流园地。
评论
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 136浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 54浏览
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 70浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 81浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 68浏览
  •         霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子
    锦正茂科技 2024-12-10 11:07 64浏览
  • 概述 通过前面的研究学习,已经可以在CycloneVGX器件中成功实现完整的TDC(或者说完整的TDL,即延时线),测试结果也比较满足,解决了超大BIN尺寸以及大量0尺寸BIN的问题,但是还是存在一些之前系列器件还未遇到的问题,这些问题将在本文中进行详细描述介绍。 在五代Cyclone器件内部系统时钟受限的情况下,意味着大量逻辑资源将被浪费在于实现较大长度的TDL上面。是否可以找到方法可以对此前TDL的长度进行优化呢?本文还将探讨这个问题。TDC前段BIN颗粒堵塞问题分析 将延时链在逻辑中实现后
    coyoo 2024-12-10 13:28 97浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 53浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 48浏览
  •         在有电流流过的导线周围会感生出磁场,再用霍尔器件检测由电流感生的磁场,即可测出产生这个磁场的电流的量值。由此就可以构成霍尔电流、电压传感器。因为霍尔器件的输出电压与加在它上面的磁感应强度以及流过其中的工作电流的乘积成比例,是一个具有乘法器功能的器件,并且可与各种逻辑电路直接接口,还可以直接驱动各种性质的负载。因为霍尔器件的应用原理简单,信号处理方便,器件本身又具有一系列的du特优点,所以在变频器中也发挥了非常重要的作用。  &nb
    锦正茂科技 2024-12-10 12:57 73浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 37浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 102浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 33浏览
  • 本文介绍Linux系统(Ubuntu/Debian通用)挂载exfat格式U盘的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。修改对应的内核配置文件# 进入sdk目录cdrk3562_linux# 编辑内核配置文件vi./kernel-5.10/arch/arm64/configs/rockchip_linux_defconfig注:不清楚内核使用哪个defc
    Industio_触觉智能 2024-12-10 09:44 90浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦