没有串口,如何打印单片机调试信息?

单片机爱好者 2022-01-24 18:30

输出调试信息是嵌入式开发中必不可少的调试利器,嵌入式开发的一个特点是很多时候没有操作系统,或者没有文件系统,常规的打印log到文件的方法基本不适用。


最常用的是通过串口输出uart log,例如51单片机,只要实现串口驱动,通过串口输出就可以了。


串口这种方法实现简单,大部分嵌入式芯片都有串口功能。但是这样简单的功能有时候却不是那么好用,比如:


  • 一款新拿到的芯片,没有串口驱动时如何打印log?

  • 某些应用下对时序要求比较高,串口输出log占用时间太长怎么办?比如usb枚举。

  • 某些bug正常运行时会出现,当打开串口log时又不再复现怎么办?

  • 一些封装中没有串口,或者串口已经被用作其他用途,要如何输出log?


本文介绍单片机没有串口时,如何打印调试信息。


1 输出log信息到SRAM

准确来说这里并不是输出log,而是以一种方式不使用串口就可以看到log。在芯片开发阶段都可以连接仿真器调试,可以使用打断点的方法调试,但是有些操作如果不能被打断就没法使用断点调试了。这时候可以考虑将log打印到SRAM中,整个操作结束后再通过仿真器查看SRAM中的log buffer,这样就实现了间接的log输出。


本文使用的测试平台是stm32f407 discovery,基于usb host实验代码,对于其他嵌入式平台原理也是通用的。


首先定义一个结构体用于打印log,如下:

typedef struct {   volatile u8     type;   u8*             buffer;             /* log buffer指针*/   volatile u32    write_idx;          /* log写入位置*/   volatile u32    read_idx;           /* log 读取位置*/}log_dev;


定义一段SRAM空间作为log buffer

static u8 log_buffer[LOG_MAX_LEN];


log buffer是环形缓冲区,在小的buffer就可以无限打印log,缺点也很明显,如果log没有及时输出就会被新的覆盖。Buffer大小根据SRAM大小分配,这里使用1kB。


为了方便输出参数,使用printf函数来格式化输出,需要做如下配置。


并包含头文件#include , 在代码中实现函数fputc()。

//redirect fputcint fputc(int ch, FILE *f){    print_ch((u8)ch);    return ch;}


写入数据到Sram:

/*write log to bufffer or I/O*/void print_ch(u8 ch){    log_dev_ptr->buffer[log_dev_ptr->write_idx++] = ch;    if(log_dev_ptr->write_idx >= LOG_MAX_LEN){        log_dev_ptr->write_idx = 0;    }}


为了方便控制log打印格式,在头文件中再添加自定义的打印函数:

#ifdef DEBUG_LOG_EN#define DEBUG(...)      printf("usb_printer:"__VA_ARGS__)#else#define DEBUG(...)#endif


在需要打印log的地方直接调用DEBUG()即可,最终效果如下,从Memory窗口可以看到打印的log:


通过SWO输出log


通过打印log到SRAM的方式可以看到log,但是数据量多的时候可能来不及查看就被覆盖了。为了解决这个问题,可以使用St-link的SWO输出log,这样就不用担心log被覆盖。


在log结构体中添加SWO的操作函数集:

typedef struct{    u8 (*init)(void* arg);    u8 (*print)(u8 ch);    u8 (*print_dma)(u8* buffer, u32 len);}log_func;
typedef struct { volatile u8 type; u8* buffer; volatile u32 write_idx; volatile u32 read_idx; //SWO log_func* swo_log_func;}log_dev;


SWO只需要print操作函数,实现如下:

u8 swo_print_ch(u8 ch){    ITM_SendChar(ch);    return 0;}


使用SWO输出log同样先输出到log buffer,然后在系统空闲时再输出,当然也可以直接输出。log延迟输出会影响log的实时性,而直接输出会影响到对时间敏感的代码运行,所以如何取舍取决于需要输出log的情形。在while循环中调用output_ch()函数,就可以实现在系统空闲时输出log。


/*output log buffer to I/O*/void output_ch(void){       u8 ch;    volatile u32 tmp_write,tmp_read;    tmp_write = log_dev_ptr->write_idx;    tmp_read = log_dev_ptr->read_idx;
if(tmp_write != tmp_read){ ch = log_dev_ptr->buffer[tmp_read++]; //swo if(log_dev_ptr->swo_log_func) log_dev_ptr->swo_log_func->print(ch); if(tmp_read >= LOG_MAX_LEN){ log_dev_ptr->read_idx = 0; }else{ log_dev_ptr->read_idx = tmp_read; } }}


1 通过IDE输出


使用IDE中SWO输出功能需要做如下配置(Keil):


在窗口可以看到输出的log:


2 通过STM32 ST-LINK Utility输出


使用STM32 ST-LINK Utility不需要做特别的设置,直接打开ST-LINK菜单下的Printf via SWO viewer,然后按start:


通过串口输出log


以上都是在串口log暂时无法使用,或者只是临时用一下的方法,而适合长期使用的还是需要通过串口输出log,毕竟大部分时候没法连接仿真器。


添加串口输出log只需要添加串口的操作函数集即可:

typedef struct {    volatile u8     type;    u8*             buffer;    volatile u32    write_idx;    volatile u32    read_idx;    volatile u32    dma_read_idx;    //uart    log_func*       uart_log_func;    //SWO    log_func*       swo_log_func;}log_dev;


实现串口驱动函数:

log_func uart_log_func = {    uart_log_init,    uart_print_ch,    0,};


添加串口输出log与通过SWO过程类似,不再多叙述。而下面要讨论的问题是,串口的速率较低,输出数据需要较长时间,严重影响系统运行。虽然可以通过先打印到SRAM再延时输出的办法来减轻影响,但是如果系统中断频繁,或者需要做耗时运算,则可能会丢失log。要解决这个问题,就是要解决CPU与输出数据到串口同时进行的问题,嵌入式工程师立马可以想到DMA正是好的解决途径。


使用DMA搬运log数据到串口输出,同时又不影响CPU运行,这样就可以解决输出串口log耗时影响系统的问题:STM32串口收发数据为什么要使用DMA?串口及DMA初始化函数如下:

u8 uart_log_init(void* arg){    DMA_InitTypeDef DMA_InitStructure;    u32* bound = (u32*)arg;    //GPIO端口设置    GPIO_InitTypeDef GPIO_InitStructure;    USART_InitTypeDef USART_InitStructure;
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA,ENABLE); //使能GPIOA时钟 RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2,ENABLE);//使能USART2时钟 //串口2对应引脚复用映射 GPIO_PinAFConfig(GPIOA,GPIO_PinSource2,GPIO_AF_USART2); //USART2端口配置 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;//复用功能 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //速度50MHz GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; //推挽复用输出 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; //上拉 GPIO_Init(GPIOA,&GPIO_InitStructure); //USART2初始化设置 USART_InitStructure.USART_BaudRate = *bound;//波特率设置 USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式 USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位 USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位 USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制 USART_InitStructure.USART_Mode = USART_Mode_Tx; //收发模式 USART_Init(USART2, &USART_InitStructure); //初始化串口1#ifdef LOG_UART_DMA_EN USART_DMACmd(USART2,USART_DMAReq_Tx,ENABLE);#endif USART_Cmd(USART2, ENABLE); //使能串口1 USART_ClearFlag(USART2, USART_FLAG_TC); while (USART_GetFlagStatus(USART2, USART_FLAG_TC) == RESET);#ifdef LOG_UART_DMA_EN RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA1, ENABLE); //Config DMA channel, uart2 TX usb DMA1 Stream6 Channel DMA_DeInit(DMA1_Stream6); DMA_InitStructure.DMA_Channel = DMA_Channel_4; DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)(&USART2->DR); DMA_InitStructure.DMA_DIR = DMA_DIR_MemoryToPeripheral; DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; DMA_InitStructure.DMA_MemoryDataSize = DMA_PeripheralDataSize_Byte; DMA_InitStructure.DMA_Mode = DMA_Mode_Normal; DMA_InitStructure.DMA_Priority = DMA_Priority_High; DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable; DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single; DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; DMA_Init(DMA1_Stream6, &DMA_InitStructure); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA1, ENABLE);#endif return 0;}


DMA输出到串口的函数如下:

u8 uart_print_dma(u8* buffer, u32 len){        if((DMA1_Stream6->CR & DMA_SxCR_EN) != RESET){                //dma not ready                return 1;        }        if(DMA_GetFlagStatus(DMA1_Stream6,DMA_IT_TCIF6) != RESET){                DMA_ClearFlag(DMA1_Stream6,DMA_FLAG_TCIF6);                DMA_Cmd(DMA1_Stream6,DISABLE);        }        DMA_SetCurrDataCounter(DMA1_Stream6,len);        DMA_MemoryTargetConfig(DMA1_Stream6, (u32)buffer, DMA_Memory_0);        DMA_Cmd(DMA1_Stream6,ENABLE);        return 0;}


这里为了方便直接使用了查询DMA状态寄存器,有需要可以修改为DMA中断方式,查Datasheet可以找到串口2使用DMA1 channel4的stream6:


最后在PC端串口助手可以看到log输出:


使用DMA搬运log buffer中数据到串口,同时CPU可以处理其他事情,这种方式对系统影响最小,并且输出log及时,是实际使用中用的最多的方式。并且不仅可以用串口,其他可以用DMA操作的接口(如SPI、USB)都可以使用这种方法来打印log。


使用IO模拟串口输出log


最后要讨论的是在一些封装中没有串口,或者串口已经被用作其他用途时如何输出log,这时可以找一个空闲的普通IO,模拟UART协议输出log到上位机的串口工具。

常用的UART协议如下:



只要在确定的时间在IO上输出高低电平就可以模拟出波形,这个确定的时间就是串口波特率。


为了得到精确延时,这里使用TIM4定时器产生1us的延时。注意:定时器不能重复用,在测试工程中TIM2、3都被用了,如果重复用就错乱了。


初始化函数如下:

u8 simu_log_init(void* arg){    TIM_TimeBaseInitTypeDef TIM_InitStructure;      u32* bound = (u32*)arg;    //GPIO端口设置    GPIO_InitTypeDef GPIO_InitStructure;    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA,ENABLE); //使能GPIOA时钟    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;   //速度50MHz    GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; //推挽复用输出    GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; //上拉    GPIO_Init(GPIOA,&GPIO_InitStructure);    GPIO_SetBits(GPIOA, GPIO_Pin_2);    //Config TIM    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4,ENABLE); //使能TIM4时钟    TIM_DeInit(TIM4);    TIM_InitStructure.TIM_Prescaler = 1;        //2分频    TIM_InitStructure.TIM_CounterMode = TIM_CounterMode_Up;    TIM_InitStructure.TIM_Period = 41;          //1us timer    TIM_InitStructure.TIM_ClockDivision = TIM_CKD_DIV1;    TIM_TimeBaseInit(TIM4, &TIM_InitStructure);    TIM_ClearFlag(TIM4, TIM_FLAG_Update);    baud_delay = 1000000/(*bound);          //根据波特率计算每个bit延时    return 0;}


使用定时器的delay函数为:

void simu_delay(u32 us){    volatile u32 tmp_us = us;    TIM_SetCounter(TIM4, 0);    TIM_Cmd(TIM4, ENABLE);    while(tmp_us--){        while(TIM_GetFlagStatus(TIM4, TIM_FLAG_Update) == RESET);        TIM_ClearFlag(TIM4, TIM_FLAG_Update);    }       TIM_Cmd(TIM4, DISABLE);}


最后是模拟输出函数,注意:输出前必须要关闭中断,一个byte输出完再打开,否则会出现乱码:

u8 simu_print_ch(u8 ch){   volatile u8 i=8;   __asm("cpsid i");   //start bit   GPIO_ResetBits(GPIOA, GPIO_Pin_2);   simu_delay(baud_delay);   while(i--){           if(ch & 0x01)               GPIO_SetBits(GPIOA, GPIO_Pin_2);           else               GPIO_ResetBits(GPIOA, GPIO_Pin_2);           ch >>= 1;           simu_delay(baud_delay);   }   //stop bit   GPIO_SetBits(GPIOA, GPIO_Pin_2);   simu_delay(baud_delay);   simu_delay(baud_delay);   __asm("cpsie i");   return 0;}


介绍了几种开发中使用过的打印调试信息的方法,方法总是死的,关键在于能灵活使用;通过打印有效的调试信息,可以帮助解决开发及后期维护中遇到的问题,少走弯路。


如果是你在项目中,没有串口线你会怎么调试呢?请在评论区说出你的想法。