什么是阻性负载?感性负载?容性负载?

韬略科技EMC 2016-10-15 17:49


解答这个问题前先解释几个名词:有功功率、无功功率、视在功率


有功功率:在交流电路中,凡是消耗在电阻元件上,功率不可逆转换的那部分功率(如转变为热能,光能,或机械能),称为有功功率;

无功功率:电路中,电感元件建立磁场,电容元件建立电场消耗的功率称为无功率,这个功率是随交流电的周期,与电源不断的进行能量转换,而并不消耗能量;

视在功率:交流电源所能提供的总功率,称为视在功率,在数值上即是,电压与电流的乘积,单位VA,视在功率即是交流电源的容量;

阻性负载

即和电源相比当负载电流负载电压没有相位差时负载为阻性(如负载为白帜灯、电炉等)

通俗一点的讲,仅是通过电阻类的元件进行工作的纯阻性负载称为阻性负载。

感性负载

通常情况下,一般把负载带电感参数的负载,即符合和电源相比负载电流滞后负载电压一个相位差的特性的负载为感性(如负载为电动机;变压器;)。通俗地说,即应用电磁感应原理制作的大功率电器产品,如电动机、压缩机、继电器、日光灯等等。

这类产品在启动时需要一个比维持正常运转所需电流大得多(大约在3-7倍)的启动电流。例如,一台在正常运转时耗电150瓦左右的电冰箱,其启动功率可高达1000瓦以上。

此外,由于感性负载在接通电源或者断开电源的一瞬间,会产生*势电压,这种电压的峰值远远大于车载交流供电器所能承受的电压值,很容易引起车用逆变器的瞬时超载,影响逆变器的使用寿命。因此,这类电器对供电波形的要求较高。

容性负载

电路中类似电容的负载,可以使负载电流超前负载电压一个相位差(和电源相比),降低电路功率因数。

一般把负载带电容参数的负载,即符合电压滞后电流特性的负载成为容性负载。充放电时,电压不能突变。
其对应的功率因为为负值。对应的感性负载的功率因数为正值。

一般电源控制类产品,所给出的负载,如未加说明则是给出的是视在功率;即总容量功率;它既包括有功功率,也包括无功功率;

而一般感性负载说明中给出的往往是有功功率的大小,例如荧光灯,标注为15~40瓦的荧光灯,镇流器消耗功率约为8瓦,实际在考虑用定时器,感应开关在控制它时,则要加上这8瓦;

具体不同的产品感性部分,即无功功率的大小,可以通过其给出的功率因数来计算。

混联电路中容抗比感抗大,电路呈容性反之为感性。

通常的用电器中并没有纯感性负载和纯容性负载。因为这两种负载不做有用功。

只有在补偿电路中才使用纯感性负载或纯容性负载。又因为绝大多数负载除阻性外,多数为感性负载,因此补偿的时候多数就用电容来补偿,所以,纯容性负载用得比纯感性负载多。如电动机,变压器等等,通常为感性负载。部分日光灯为容性负载。

举例:纯感性负载就是一组电感。通常用来补偿电路中的容性电流。

在电路中带线圈的用电设备,其线圈部分即为纯感性负载。如电动机、变压器、电风扇、日光灯镇流器等。

纯感性负载的电流是不能突变。感性负载应用广泛。在电路中带电容的用电设备,其电容部分即为纯容性负载。如补偿电容等。

纯感性负载的电压是不能突变。从理论上讲:纯电阻电路、纯电容电路、纯电感电路是不存在的。

电阻负载在作功时也会有电感、电容性负载存在。例如:导线间会存在线路间的电容,导线间和对地间存在电感,期间感性负载通常大于容性负载。电力电容在作功时也会发热,即电阻性作功。电感亦如此。元件的阻抗是频率的函数。在全频率范围内纯电阻电路、纯电容电路、纯电感电路是不存在的。

理论上只有可能在某一个频率存在.实际中应该做不到。

一、谐波:我国电网的频率为50Hz,凡是高于50Hz的频率的波都称为谐波。谐波是以倍加形式产生,也就是说频率为50的倍数:100、150、200……,凡是高于50Hz的波称为高谐波。

二、负载:指消耗电能的装置,把电能转换为机械能、热能、光能等。负载就是指用电器,例如:灯光、灯管、电炉、电机、冰箱、空调等。

三、轻载:轻载主要是指电机所带动的设备比较轻,没有达到其设计的额定功率,就是实际载荷小于设计载荷。

四、变载:变载是指电机在运行过程中,所带动的载荷在不断的发生变化,有时重,有时轻,反应到电机上为有时输出的功率大,有时小。在电压一定的情况下,电流随负载变化而变化。例如:锷式破碎机、各种压力机、冲压机床、抽油机、压缩机、油压机、电动衣车等。

五、恒载:恒载也称为固定负载,就是电机在运行过程中,负荷基本不变,电机的输出功率和电流基本是一个恒定的值。轻载可能是恒载。

六、超载运行:超载运行是指电机处在一种超过本身载荷能力的运行。比如说一个55KW的电机额定电流为110A,而在实际运行当中电流超过110A,就是超载运行,长期处于超载运行的设备会受到损坏,减少其使用寿命。

七、负载率:负载率是实际工作电流与额定电流的比值。负载率=实际工作电流÷额定电流×100%

八、电机额定功率与额定电流的关系:一般讲,电机的额定电流是额定功率的2倍。
例如:一个37KW的电机,它的额定电流大约是37*2=74A
一个100KW的电机,它的额定电流大约是100*2=200A

九、感性负载、阻性负载:对于灯具来讲,靠气体导通发光的灯具就是感性负载,靠电阻丝发光的属于阻性负载,感性负载如:日光灯、高压钠灯、汞灯、金属卤化物灯等。阻性负载如:碘钨灯、白炽灯、电阻炉、烤箱、电热水器、热油汀等。电机也属于感性负载。
十、几种常用灯光的实际工作电流:(在电网电压220V情况下)
1、400W高压钠灯单只灯,工作电流为3.1~3.3A。
2、250W高压钠灯单只灯,工作电流为2.0~2.3A。
3、400W金属卤化物灯单只灯,工作电流为2.0~2.2A。
4、250W金属卤化物灯单只灯,工作电流为1.4~1.6A。
5、电感式镇流器40W日光灯单只灯,工作电流为0.28~0.30A。
6、电子式镇流器40W日光灯单只灯,工作电流为0.14~0.16A。
根据以上数据可知,灯光耗电除灯光本身外,镇流器也消耗电能。

十一、在灯光电路中,如果全部采用电抗式镇流器,装上节电器后,电流会下降30%,但电子式日光灯电流基本无下降,线路中装有补偿装置,电流下降也比较少。

文章转自网络,内容仅供学习交流,请勿用于商业用途,如涉及版权问题请及时联系我司,以便删除或更改。



韬略科技EMC 分享EMC最新动态及行业资讯,为您提供最合理的EMC解决方案,广交行业朋友,共同打造最专业的EMC交流平台!
评论 (0)
  •   电磁数据管理系统深度解析   北京华盛恒辉电磁数据管理系统作为专业的数据处理平台,旨在提升电磁数据的处理效率、安全性与可靠性。以下从功能架构、核心特性、应用场景及技术实现展开分析:   应用案例   目前,已有多个电磁数据管理系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁数据管理系统。这些成功案例为电磁数据管理系统的推广和应用提供了有力支持。   一、核心功能模块   数据采集与接入:实时接收天线、频谱仪等设备数据,兼容多协议接口,确保数据采集的全面性与实时性
    华盛恒辉l58ll334744 2025-05-13 10:59 274浏览
  • 一、蓝牙射频电路设计的核心价值在智能穿戴、智能家居等物联网设备中,射频性能直接决定通信质量与用户体验。WT2605C等蓝牙语音芯片的射频电路设计,需在紧凑的PCB空间内实现低损耗信号传输与强抗干扰能力。射频走线每0.1dB的损耗优化可使通信距离提升3-5米,而阻抗失配可能导致30%以上的能效损失。二、射频走线设计规范1. 阻抗控制黄金法则50Ω标准阻抗实现:采用4层板时,顶层走线宽度0.3mm(FR4材质,介电常数4.3)双面板需通过SI9000软件计算,典型线宽1.2mm(1.6mm板厚)阻抗
    广州唯创电子 2025-05-13 09:00 18浏览
  • 在当下的商业版图中,胖东来宛如一颗璀璨的明星,散发着独特的光芒。它以卓越的服务、优质的商品以及独特的企业文化,赢得了消费者的广泛赞誉和业界的高度关注。然而,近期胖东来与自媒体博主之间的一场激烈对战,却如同一面镜子,映照出了这家企业在光环背后的真实与挣扎,也引发了我们对于商业本质、企业发展以及舆论生态的深入思考。​冲突爆发:舆论场中的硝烟弥漫​2025年4月,抖音玉石博主“柴怼怼”(粉丝约28万)突然发难,发布多条视频直指河南零售巨头胖东来。他言辞犀利,指控胖东来在玉石销售方面存在暴利行为,声称其
    疯人评 2025-05-14 13:49 18浏览
  •   电磁数据展示系统平台解析   北京华盛恒辉电磁数据展示系统平台是实现电磁数据高效展示、分析与管理的综合性软件体系,以下从核心功能、技术特性、应用场景及发展趋势展开解读:   应用案例   目前,已有多个电磁数据展示系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁数据展示系统。这些成功案例为电磁数据展示系统的推广和应用提供了有力支持。   一、核心功能模块   数据采集与预处理   智能分析处理   集成频谱分析、时频变换等信号处理算法,自动提取时域频域特征;
    华盛恒辉l58ll334744 2025-05-13 10:20 368浏览
  • 一、量子自旋态光学操控1、‌拓扑量子态探测‌磁光克尔效应通过检测拓扑磁结构(如磁斯格明子)的磁光响应,实现对量子材料中非平庸拓扑自旋序的非侵入式表征。例如,二维量子磁体中的“拓扑克尔效应”可通过偏振光旋转角变化揭示斯格明子阵列的动态演化,为拓扑量子比特的稳定性评估提供关键手段。2、‌量子态调控界面‌非厄米磁光耦合系统(如法布里-珀罗腔)通过耗散调控增强克尔灵敏度,可用于奇异点附近的量子自旋态高精度操控,为超导量子比特与光子系统的耦合提供新思路。二、光子量子计算架构优化1、‌光子内存计算器件‌基于
    锦正茂科技 2025-05-13 09:57 15浏览
  • 感谢面包板论坛组织的本次测评活动,本次测评的对象是STM32WL Nucleo-64板 (NUCLEO-WL55JC) ,该测试板专为LoRa™应用原型构建,基于STM32WL系列sub-GHz无线微控制器。其性能、功耗及特性组合经过精心挑选,支持通过Arduino® Uno V3连接,并利用ST morpho接头扩展STM32WL Nucleo功能,便于访问多种专用屏蔽。STM32WL Nucleo-64板集成STLINK-V3E调试器与编程器,无需额外探测器。该板配备全面的STM
    无言的朝圣 2025-05-13 09:47 158浏览
  •   军事领域仿真推演系统的战略价值与发展前瞻   北京华盛恒辉仿真推演系统通过技术创新与应用拓展,已成为作战效能提升的核心支撑。以下从战略应用与未来趋势展开解析:   应用案例   目前,已有多个仿真推演系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润仿真推演系统。这些成功案例为仿真推演系统的推广和应用提供了有力支持。   一、核心战略应用   1. 作战理论创新引擎   依托低成本仿真平台,军事人员可高效验证新型作战概念。   2. 装备全周期优化   覆盖武器
    华盛恒辉l58ll334744 2025-05-14 16:41 45浏览
  • 在全球能源结构转型加速推进与政策驱动的双重作用下,油气输送、智慧水务及化学化工等流体计量场景正面临效率革命与智能化升级的迫切需求。传统机械式流量计虽在工业初期有效支撑了基础计量需求,但其机械磨损、精度衰减与运维困难等固有缺陷已难以适应现代工业对精准化、智能化与可持续发展的多维诉求。在此背景下,超声波流量计则凭借着高精度探测、可实时监测、无侵入式安装、无阻流部件、易于维护与绿色环保等优势实现了突破性发展,成为当代高精度流体计量体系中不可或缺的重要一环。该技术不仅是撬动能源利用效率提升、支撑智慧管网
    华普微HOPERF 2025-05-14 11:49 23浏览
  • 文/Leon编辑/cc孙聪颖‍2025年1月至今,AI领域最出圈的除了DeepSeek,就是号称首个“通用AI Agent”(智能体)的Manus了,其邀请码一度被炒到8万元。很快,通用Agent就成为互联网大厂、AI独角兽们的新方向,迅速地“卷”了起来。国外市场,Open AI、Claude、微软等迅速推出Agent产品或构建平台,国内企业也在4月迅速跟进。4月,字节跳动、阿里巴巴、百度纷纷入局通用Agent市场,主打复杂的多任务、工作流功能,并对个人用户免费。腾讯则迅速更新腾讯元器的API接
    华尔街科技眼 2025-05-12 22:29 154浏览
  • 在当下竞争激烈的 AI 赛道,企业高层的变动往往牵一发而动全身,零一万物近来就深陷这样的动荡漩涡。近日,零一万物联合创始人、技术副总裁戴宗宏离职创业的消息不胫而走。这位在大模型基础设施领域造诣颇深的专家,此前在华为云、阿里达摩院积累了深厚经验,在零一万物时更是带领团队短期内完成了千卡 GPU 集群等关键设施搭建,其离去无疑是重大损失。而这并非个例,自 2024 年下半年以来,李先刚、黄文灏、潘欣、曹大鹏等一众联创和早期核心成员纷纷出走。
    用户1742991715177 2025-05-13 21:24 117浏览
  •   军事仿真推演系统平台核心解析   北京华盛恒辉军事仿真推演系统平台以计算机仿真技术为基石,在功能、架构、应用及效能上展现显著优势,成为提升军事作战与决策能力的核心工具。   应用案例   目前,已有多个仿真推演系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润仿真推演系统。这些成功案例为仿真推演系统的推广和应用提供了有力支持。   一、全流程功能体系   精准推演控制:覆盖推演启动至结束全流程。   智能想定管理:集成作战信息配置、兵力部署功能。   数据模型整合
    华盛恒辉l58ll334744 2025-05-14 17:11 39浏览
  •   舰艇电磁兼容分析与整改系统平台解析   北京华盛恒辉舰艇电磁兼容分析与整改系统平台是保障海军装备作战效能的关键技术,旨在确保舰艇电子设备在复杂电磁环境中协同运行。本文从架构、技术、流程、价值及趋势五个维度展开解析。   应用案例   目前,已有多个舰艇电磁兼容分析与整改系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润舰艇电磁兼容分析与整改系统。这些成功案例为舰艇电磁兼容分析与整改系统的推广和应用提供了有力支持。   一、系统架构:模块化智能体系   电磁环境建模:基
    华盛恒辉l58ll334744 2025-05-14 11:22 62浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦