麦克斯韦方程组在电磁学与经典电动力学中的地位,如同牛顿运动定律在牛顿力学中的地位一样。以麦克斯韦方程组为核心的电磁理论,是当代无线电波,通讯和光理论的基石。作为经典物理学最引以自豪的成就之一,麦克斯韦方程组揭示出电磁相互作用的完美统一,为物理学家树立了这样一种信仰:物质的各种相互作用在更高层次上应该是统一的。为此目的,多少顶级科学家几经做了百年的努力,但最终目的还没有达到。我们从课本中熟悉的麦克斯韦方程组是它的微分形式:
现在考虑如果介质是运动的,它的分布可以随时间变化而变化,例如飞机的飞行,火车的运行等,方程式(3)就不严格成立了。王中林院士首先意识到这个假设后,为了推出在有介质运动的情况下的麦克斯韦方程组,他从麦克斯韦方程组的积分形式出发,考虑了介质的运动对于方程(3)的修正,推导出拓展型的麦克斯韦方程组:
其中方程式(4c-4d)右手第二项引入了和速度v有关的相关校正项。全文发表在《Materials Today》。文中不但给出了标准方程组的推导,同时也把相关物理量的计算方法做了详细的描述,包括如何用微扰论方法,赫兹矢量法,迭代法等在不同条件下求解拓展型麦克斯韦方程组的各种数学工具。
图1对于静态介质的麦克斯韦方程组与对于运动介质拓展的麦克斯韦方程组的比较。拓展的麦克斯韦方程组不但包涵了经典麦克斯韦方程组的全部内涵,同时也引入了由于带电介质运动而产生的电磁耦合效应以及纳米发电机的理论构架。在位移电流中添加的Ps项拓展了它们在能源领域的应用。纳米发电机是麦克斯韦方程组继电磁波理论和技术后在能源与传感方面的另一重大应用。在可以预见的未来,这棵汲取拓展的麦克斯韦方程组营养的大树,将愈发茁壮成长,引领技术革新,深刻改变人类社会。
王中林拓展麦克斯韦方程组的最初动机是发展纳米发电机的理论构架。纳米发电机现在被定义为使用位移电流作为驱动力有效地将机械能转换成电能/电信号的一个领域。2006年,他和团队发明了第一台压电纳米发电机(PENG),2012年发明了第一台摩擦纳米发电机(TENG)。到目前为止,纳米发电机的研究已经引起了全世界的广泛关注,源于它们在微纳能源、自驱动传感、蓝色能源和高压电源领域的重要应用。
2017年,王院士首次拓展了位移电流的表达式,首次在电位移矢量D'中引入Ps项,用于推导纳米发电机的输出功率,Ps是由机械触发产生的表面静电荷引起的极化密度,不同于电场引起的介质极化P。无论是否有外加电场,这种表面静电荷均能在压电极化和摩擦起电中产生。2019年王中林解析推导出了纳米发电机的输运方程,Ps项的解析表达式,负载下的输出功率和空间电磁场分布及其辐射的通式,并把摩擦纳米发电机的四种模式给出了解析解,奠定了纳米发电机的整体理论构架,形成了本学科发展的理论基础。
图2:狭义相对论与运动介质的拓展型麦克斯韦方程组的区别。
那对于运动介质的拓展型麦克斯韦方程组和狭义相对论的区别是什么呢?狭义相对论是描述在A参考系中发生的一个电磁现象被在处于A参考系和运动中的B参考系中的两个不同人同时观察所带来的不同观察结果,即一个电磁现象两个观察者。而拓展型麦克斯韦方程组描述的是发生在A参考系和运动中的B参考系中的两个不同且可能有关联的电磁现象被处于A参考系中的同一个人观察所的到的结果,即两个有关联的电磁现象一个观察者 。
拓展的麦克斯韦方程组具有广泛的意义,对于描述运动中的高铁,飞行的物体,例如飞机,导弹,空间星球等的电磁波的产生,发射,反射和散射等有一定的应用。它不但包括了最常见的多普勒效应,同时也包括带动运动物体对于电磁波振幅和相位的修正,期待在未来的通讯方面有所应用。
----纳米能源所
1月13日下午,中国科学院北京纳米能源与系统研究所发布两项重磅科研进展,称中国科学院北京纳米能源与系统研究所所长与首席科学家、中科院外籍院士王中林经过数年研究和实验验证,对麦克斯韦方程组进行了成功拓展。
声明:
投稿/招聘/推广/宣传 请加微信:15989459034