自动驾驶传感器融合:激光雷达+摄像头

汽车电子与软件 2022-01-11 08:00




一. 前言


自动驾驶感知技术所采用的传感器主要包括摄像头,激光雷达和毫米波雷达。这些传感器各有优缺点,也互为补充,因此如何高效的融合多传感器数据,也就自然的成为了感知算法研究的热点之一。本篇文章介绍如何在感知任务中融合激光雷达和摄像头,重点是目前主流的基于深度学习的融合算法。


摄像头产生的数据是2D图像,对于物体的形状和类别的感知精度较高。深度学习技术的成功起源于计算机视觉任务,很多成功的算法也是基于对图像数据的处理,因此目前基于图像的感知技术已经相对成熟。图像数据的缺点在于受外界光照条件的影响较大,很难适用于所有的天气条件。对于单目系统来说,获取场景和物体的深度(距离)信息也比较困难。双目系统可以解决深度信息获取的问题,但是计算量很大。激光雷达在一定程度上弥补了摄像头的缺点,可以精确的感知物体的距离,但是限制在于成本较高,车规要求难以满足,因此在量产方面比较困难。同时,激光雷达生成的3D点云比较稀疏(比如垂直扫描线只有64或128)。对于远距离物体或者小物体来说,反射点的数量会非常少。


如下图所示,图像数据和点云存在着巨大的差别首先是视角不同,图像数据是真实世界通过透视投影得到的二维表示,而三维点云则包含了真实世界欧式坐标系中的三维信息,可以投影到多种视图。其次是数据结构不同,图像数据是规则的,有序的,稠密的,而点云数据是不规则的,无序的,稀疏的。在空间分辨率方面,图像数据也比点云数据高很多。


图片来源于参考文献[1]


自动驾驶感知系统中有两个典型的任务:物体检测和语义分割。深度学习技术的兴起首先来自视觉领域,基于图像数据的物体检测和语义分割已经被广泛和充分的研究,也有很多非常全面的综述文章,这里就不赘述了。另一方面,随着车载激光雷达的不断普及以及一些大规模数据库的发布,点云数据处理的研究这几年来发展也非常迅速。本专栏之前的两篇文章分别介绍了点云物体检测和语义分割的发展情况,感兴趣的朋友可以参考。下面以物体检测任务为主来介绍不同的融合方法。语义分割的融合方法可以由物体检测扩展得到,就不做单独介绍了。



2. 不同的融合策略


物体检测的策略分为:决策层融合,决策+特征层融合,以及特征层融合。在决策层融合中,图像和点云分别得到物体检测结果(BoundingBox),转换到统一坐标系后再进行合并。这种策略中用到的大都是一些传统的方法,比如IoU计算,卡尔曼滤波等,与深度学习关系不大,本文就不做介绍了。下面重点来讲讲后两种融合策略。


2.1 决策+特征层融合


这种策略的主要思路是将先通过一种数据生成物体的候选框(Proposal)。如果采用图像数据,那么生成的就是2D候选框,如果采用点云数据,那么生成的就是3D候选框。然后将候选框与另外一种数据相结合来生成最终的物体检测结果(也可以再重复利用生成候选框的数据)。这个结合的过程就是将候选框和数据统一到相同的坐标系下,可以是3D点云坐标(比如F-PointNet),也可以是2D图像坐标(比如IPOD)。


F-PointNet[2]由图像数据生成2D物体候选框,然后将这些候选框投影到3D空间。每个2D候选框在3D空间对应一个视椎体(Frustum),并将落到视椎体中所有点合并起来作为该候选框的特征。视椎体中的点可能来自前景的遮挡物体或者背景物体,所以需要进行3D实例分割来去除这些干扰,只保留物体上的点,用来进行后续的物体框估计(类似PointNet中的处理方式)。这种基于视椎的方法,其缺点在于每个视椎中只能处理一个要检测的物体,这对于拥挤的场景和小目标(比如行人)来说是不能满足要求的。


F-PointNet网络结构图


针对视椎的上述问题,IPOD[3]提出采用2D语义分割来替换2D物体检测。首先,图像上的语义分割结果被用来去除点云中的背景点,这是通过将点云投影到2D图像空间来完成的。接下来,在每个前景点处生成候选物体框,并采用NMS去除重叠的候选框,最后每帧点云大约保留500个候选框。同时,PointNet++网格被用来进行点特征提取。有了候选框和点特征,最后一步采用一个小规模的PointNet++来预测类别和准确的物体框(当然这里也可以用别的网络,比如MLP)。IPOD在语义分割的基础上生成了稠密的候选物体框,因此在含有大量物体和互相遮挡的场景中效果比较好。


IPOD网络结构图


上面两个方法分别通过2D图像上的物体检测和语义分割结果来生成候选框,然后只在点云数据上进行后续的处理。SIFRNet[4]提出在视椎体上融合点云和图像特征,以增强视椎体所包含的信息量,用来进一步提高物体框预测的质量。


SIFRNet网络结构图


近年来,随着3D物体检测技术的快速发展,物体候选框的选取也从逐渐从2D向3D转变MV3D[5]是基于3D候选框的代表性工作。首先,它将3D点云映射到BEV视图,并基于此视图生成3D物体候选框。然后,将这些3D候选框映射到点云的前视图以及图像视图,并将相应的特征进行融合。特征融合是以候选框为基础,并通过ROI pooling来完成的。


MV3D网络结构图


AVOD[6]的思路也是在3D候选框的基础上融合图像和点云特征。但是原始候选框的生成并不是通过点云处理得到,而是通过先验知识在BEV视图下均匀采样生成的(间隔0.5米,大小为各个物体类的均值)。点云数据用来辅助去除空的候选框,这样最终每帧数据会产生8万到10万个候选框。这些候选框通过融合的图像和点云特征进行进一步筛选后,作为最终的候选再送入第二阶段的检测器。因此,也可以认为AVOD的候选框是同时在图像和点云上得到的


AVOD网络结构图


2.2 特征层融合


决策+特征层融合的特点是以物体候选框为中心来融合不同的特征,融合的过程中一般会用到ROI pooling(比如双线性插值),而这个操作会导致空间细节特征的丢失。另外一种思路是特征层融合,也就是直接融合多种特征。比如说将点云映射到图像空间,作为带有深度信息的额外通道与图像的RGB通道进行合并。这种思路简单直接,对于2D物体检测来说效果不错。但是融合的过程丢失了很多3D空间信息,因此对于3D物体检测来说效果并不好。由于3D物体检测领域的迅速发展,特征层融合也更倾向于在3D坐标下完成,这样可以为3D物体检测提供更多信息


ContFuse[7]采用连续卷积(Continuous Convolution)来融合点云和图像特征。融合过程在BEV视图下完成。对于BEV上的一个像素(网格),首先在点云数据中找到其K个最邻近的点,然后将这些3D空间中的点映射到图像空间,以此得到每个点的图像特征。同时,每个点的几何特征则是该点到相应BEV像素的XY偏移量。将图像特征和几何特征合并作为点特征,然后按照连续卷积的做法对其进行加权求和(权重依赖于XY偏移量),以得到相应BEV像素处的特征值。对BEV的每个像素进行类似处理,就得到了一个BEV特征图。这样就完成了图像特征到BEV视图的转换,之后就可以很方便的与来自点云的BEV特征进行融合。ContFuse中在多个空间分辨率下进行了上述的特征融合,以提高对不同大小物体的检测能力。


利用连续卷积将图像特征投影到BEV视图


PointPainting[8]把点云投影到图像语义分割的结果中,这与IPOD中的做法类似。但是,PointPainting没有利用语义分割的结果来分离前景点,而是直接将语义分割的信息附加到点云上。这样做的好处是,融合之后的数据还是点云(但是具有更为丰富的语义信息),可以采用任何点云物体检测网络来处理,比如PointRCNN,VoxelNet,PointPillar等等。


PointPainting的融合流程图


PointPainting中附加给点云的是2D图像的语义信息,这已经是高度抽象之后的信息,而原始的图像特征则被丢弃了。从融合的角度来看,底层特征的融合可以更大程度的保留信息,利用不同特征之间的互补性,理论上说也就更有可能提升融合的效果。MVX-Net[9]利用一个实现训练好的2D卷积网络来提取图像特征,然后通过点云和图像之间的映射关系将图像特征附加到每个点上。之后再采用VoxelNet来处理融合后的点特征。除了这种点融合策略,MVX-Net还提出了在voxel层次上融合,其主要的不同就在于将voxel而不是point投影到图像空间,因此图像特征是被附加在voxel之上。从实验结果来看,point融合比voxel融合结果略好,这也进一步说明了较低的融合层次可能会带来更好的效果。


MVX-Net中的Point融合方法


语义分割任务中的融合一般都是在特征层上进行,之前介绍的特征融合方法理论上来说可以用来进行语义分割。比如说,ContFuse在BEV网格上融合了图像和点云特征,这个特征就可以用来进行网格级别的语义分割,而PointPainting将图像特征附加到点云上,后续可以采用任何基于点云语义分割的算法来对每个点进行语义分类,甚至也可以进行实例分割和全景分割。



3. 结果对比


这里我们来总结和定量的对比一下前面介绍的各种融合方法。准确度指标采用采用KITTI数据库上3D车辆检测中等难度的AP(70% IoU),速度指标采用FPS(运行的硬件不同,因此不具备完全的可比性)。下表中融合方法一栏中的D+F表示决策+特征层融合,之后的2D/3D表示是在2D图像还是3D点云上提取物体候选框。F表示特征层融合,之后的BEV和Point表示融合的位置。总体来说,特征层融合的效果较好,基于Point的融合也优于基于BEV的融合。


算法融合方法准确度(AP)速度(FPS)
F-PointNetD+F, 2D69.795.9
IPODD+F, 2D72.575.0
SIFRNetD+F, 2D72.05-
MV3DD+F, 3D63.632.8
AVODD+F, 2D+3D71.7612.5
ContFuseF, BEV68.7816.7
PointPaintingF, Point71.702.5
MVX-NetF, Point77.43-


作为对比,只基于点云数据的VoxelNet其AP为64.17,MVX-Net将图像特征附加到点云上之后再采用VoxelNet就可以将AP提升到77.43,提升的幅度还是非常可观的。PointPainting中的对比实验也展示了类似的提升。下图是分别在KITTI和NuScenes上进行的对比实验。PointPillar,VoxelNet,和PointRCNN这三个点云物体检测的常用方法在结合了图像特征后都有了很大幅度的提升。尤其是对于行人和骑车的人这两个类来说,提升的幅度更大,这也证明了分辨率较高的图像特征对小目标的检测有很大的帮助。




参考文献

[1] Cui et.al., Deep Learning for Image and Point Cloud Fusion in Autonomous Driving: A Review, 2020.
[2] Qi et.al., Frustum Pointnets for 3d Object Detection from RGB-D Data, 2018.
[3] Yang et.al., IPOD: Intensive Point-based Object Detector for Point Cloud, 2018.
[4] Zhao et.al., 3D Object Detection Using Scale Invariant and Feature Re-weighting Networks, 2019.
[5] Chen et.al., Multi-View 3D Object Detection Network for Autonomous Driving, 2016.
[6] Ku et.al., Joint 3D Proposal Generation and Object Detection from View Aggregation, 2017.
[7] Liang et.al., Deep Continuous Fusion for Multi-Sensor 3D Object Detection, 2018.
[8] Vora et.al., PointPainting: Sequential Fusion for 3D Object Detection, 2019.
[9] Sindagi et.al., MVX-Net: Multimodal VoxelNet for 3D Object Detection, 2019.



阅读原文,关注作者知乎!



END
汽车电子与软件 主要介绍汽车电子软件设计相关内容,每天分享一篇技术文章!
评论 (0)
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 153浏览
  • 2024年初,OpenAI公布的Sora AI视频生成模型,震撼了国产大模型行业。随后国产厂商集体发力视频大模型,快手发布视频生成大模型可灵,字节跳动发布豆包视频生成模型,正式打响了国内AI视频生成领域第一枪。众多企业匆忙入局,只为在这片新兴市场中抢占先机,却往往忽视了技术成熟度与应用规范的打磨。以社交平台上泛滥的 AI 伪造视频为例,全红婵家人被恶意仿冒博流量卖货,明星们也纷纷中招,刘晓庆、张馨予等均曾反馈有人在视频号上通过AI生成视频假冒她。这些伪造视频不仅严重侵犯他人权
    用户1742991715177 2025-05-05 23:08 54浏览
  • 5小时自学修好BIOS卡住问题  更换硬盘故障现象:f2、f12均失效,只有ESC和开关机键可用。错误页面:经过AI的故障截图询问,确定是机体内灰尘太多,和硬盘损坏造成,开机卡在BIOS。经过亲手拆螺丝和壳体、排线,跟换了新的2.5寸硬盘,故障排除。理论依据:以下是针对“5小时自学修好BIOS卡住问题+更换硬盘”的综合性解决方案,结合硬件操作和BIOS设置调整,分步骤说明:一、判断BIOS卡住的原因1. 初步排查     拔掉多余硬件:断开所有外接设备(如
    丙丁先生 2025-05-04 09:14 111浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 231浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 163浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 360浏览
  • 想不到短短几年时间,华为就从“技术封锁”的持久战中突围,成功将“被卡脖子”困境扭转为科技主权的主动争夺战。众所周知,前几年技术霸权国家突然对华为发难,导致芯片供应链被强行掐断,海外市场阵地接连失守,恶意舆论如汹涌潮水,让其瞬间陷入了前所未有的困境。而最近财报显示,华为已经渡过危险期,甚至开始反击。2024年财报数据显示,华为实现全球销售收入8621亿元人民币,净利润626亿元人民币;经营活动现金流为884.17亿元,同比增长26.7%。对比来看,2024年营收同比增长22.42%,2023年为7
    用户1742991715177 2025-05-02 18:40 206浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 369浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 115浏览
  • 文/郭楚妤编辑/cc孙聪颖‍相较于一众措辞谨慎、毫无掌舵者个人风格的上市公司财报,利亚德的财报显得尤为另类。利亚德光电集团成立于1995年,是一家以LED显示、液晶显示产品设计、生产、销售及服务为主业的高新技术企业。自2016年年报起,无论业绩优劣,董事长李军每年都会在财报末尾附上一首七言打油诗,抒发其对公司当年业绩的感悟。从“三年翻番顺大势”“智能显示我第一”“披荆斩棘幸从容”等词句中,不难窥见李军的雄心壮志。2012年,利亚德(300296.SZ)在深交所创业板上市。成立以来,该公司在细分领
    华尔街科技眼 2025-05-07 19:25 78浏览
  • 某国产固态电解的2次和3次谐波失真相当好,值得一试。(仅供参考)现在国产固态电解的性能跟上来了,值得一试。当然不是随便搞低端的那种。电容器对音质的影响_电子基础-面包板社区  https://mbb.eet-china.com/forum/topic/150182_1_1.html (右键复制链接打开)电容器对音质的影响相当大。电容器在音频系统中的角色不可忽视,它们能够调整系统增益、提供合适的偏置、抑制电源噪声并隔离直流成分。然而,在便携式设备中,由于空间、成本的限
    bruce小肥羊 2025-05-04 18:14 208浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦