从用户态、内核态、全局变量、BSS函数看进程运行状态

一口Linux 2022-01-07 11:50

击上方“一口Linux”,选择“星标公众号

干货福利,第一时间送达!

收集项目组需求的时候,我们知道一个进程要运行起来需要以下的内存结构。

用户态:

  • 代码段、全局变量、BSS

  • 函数栈

  • 内存映射区

内核态:

  • 内核的代码、全局变量、BSS

  • 内核数据结构例如 task_struct

  • 内核栈

  • 内核中动态分配的内存

现在这些事是不是已经都有了着落?

我画了一个图,总结一下进程运行状态在 32 位下对应关系。


对于 64 位的对应关系,只是稍有区别,我这里也画了一个图,方便你对比理解。



用户态和内核态的划分

进程的虚拟地址空间,其实就是站在项目组的角度来看内存,所以我们就从 task_struct 出发来看。这里面有一个 struct mm_struct 结构来管理内存。

struct mm_struct		*mm;

在 struct mm_struct 里面,有这样一个成员变量:

unsigned long task_size;		/* size of task vm space */

我们之前讲过,整个虚拟内存空间要一分为二,一部分是用户态地址空间,一部分是内核态地址空间,那这两部分的分界线在哪里呢?这就要 task_size 来定义。

对于 32 未来的系统,内核里面是这样定义 TASK_SIZE 答:

#ifdef CONFIG_X86_32
/*
* User space process size: 3GB (default).
*/

#define TASK_SIZE PAGE_OFFSET
#define TASK_SIZE_MAX TASK_SIZE
/*
config PAGE_OFFSET
hex
default 0xC0000000
depends on X86_32
*/

#else
/*
* User space process size. 47bits minus one guard page.
*/

#define TASK_SIZE_MAX ((1UL << 47) - PAGE_SIZE)
#define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
IA32_PAGE_OFFSET : TASK_SIZE_MAX)

......

当执行一个新的进程的时候,会做以下的设置:

current->mm->task_size = TASK_SIZE;

对于 32 位系统,最大能够寻址 2^32=4G,其中用户态虚拟地址空间是 3G,内核态是 1G。

对于 64 位置系统,虚拟地址只使用了 48 位。就像代码里面写的一样,1 左移了 47 位,就相当于 48 位地址空间一半的位置,0x0000800000000000,然后减去一个页,就是 0x00007FFFFFFFF000,共 128T。同样,内核空间也是 128T。内核空间和用户空间之间隔着很大的空隙,以此来进行隔离。

用户态布局

我们先来看用户态虚拟空间的布局。

之前我们讲了用户态虚拟空间里面有几类数据,例如代码、全局变量、堆、栈、内存映射区等。在 struct mm_struct 里面,有下面这些变量定义了这些区域的统计信息和位置。

unsigned long mmap_base;	/* base of mmap area */
unsigned long total_vm; /* Total pages mapped */
unsigned long locked_vm; /* Pages that have PG_mlocked set */
unsigned long pinned_vm; /* Refcount permanently increased */
unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
unsigned long stack_vm; /* VM_STACK */
unsigned long start_code, end_code, start_data, end_data;
unsigned long start_brk, brk, start_stack;
unsigned long arg_start, arg_end, env_start, env_end;

其中,total_vm 是总共映射的页的数目。我们知道,这么大的虚拟地址空间,不可能都有真实内存对应,所以这里是映射的数目。当内存吃紧的时候,有些页可以换出到硬盘上,有的页因为比较重要,不能换出。locked_vm 就是被锁定不能换出,pinned_vm 是不能换出,也不能移动。

data_vm 是存放数据的页的数目,exec_vm 是存放可执行文件的页的数目,stack_vm 是栈所占的页的数目。

start_code 和 end_code 表示可执行代码的开始和结束位置,start_data 和 end_data 表示已初始化数据的开始位置和结束位置。

start_brk 是堆的起始位置,brk 是堆当前的结束位置。前面咱们讲过 malloc 申请一小块内存的话,就是通过改变 brk 位置实现的。

start_stack 是栈的起始位置,栈的结束位置在寄存器的栈顶指针中。

arg_start 和 arg_end 是参数列表的位置, env_start 和 env_end 是环境变量的位置。它们都位于栈中最高地址的地方。

mmap_base 表示虚拟地址空间中用于内存映射的起始地址。一般情况下,这个空间是从高地址到低地址增长的。前面咱们讲 malloc 申请一大块内存的时候,就是通过 mmap 在这里映射一块区域到物理内存。咱们加载动态链接库 so 文件,也是在这个区域里面,映射一块区域到 so 文件。

这下所有用户状态的区域的位置基本上都描述清楚了。整个布局就像下面这张图这样。虽然 32 位和 64 位置的空间相差很大,但是区域的类别和布局是相似的。


除了位置信息之外,struct mm_struct 里面还专门有一个结构 vm_area_struct,来描述这些区域的属性。

struct vm_area_struct *mmap;		/* list of VMAs */
struct rb_root mm_rb;

这里面一个是单链表,用于将这些区域串起来。另外还有一个红黑树。又是这个数据结构,在进程调度的时候我们用的也是红黑树。它的好处就是查找和修改都很快。这里用红黑树,就是为了快速查找一个内存区域,并在需要改变的时候,能够快速修改。

struct vm_area_struct {
/* The first cache line has the info for VMA tree walking. */
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address within vm_mm. */
/* linked list of VM areas per task, sorted by address */
struct vm_area_struct *vm_next, *vm_prev;
struct rb_node vm_rb;
struct mm_struct *vm_mm; /* The address space we belong to. */
struct list_head anon_vma_chain; /* Serialized by mmap_sem &
* page_table_lock */

struct anon_vma *anon_vma; /* Serialized by page_table_lock */
/* Function pointers to deal with this struct. */
const struct vm_operations_struct *vm_ops;
struct file * vm_file; /* File we map to (can be NULL). */
void * vm_private_data; /* was vm_pte (shared mem) */
} __randomize_layout;

vm_start 和 vm_end 指定了该区域在用户空间中的起始和结束地址。vm_next 和 vm_prev 将这个区域串在链表上。vm_rb 将这个区域放在红黑树上。vm_ops 里面是对这个内存区域可以做的操作的定义。

虚拟内存区域可以映射到物理内存,也可以映射到文件,映射到物理内存的时候称为匿名映射,anon_vma 中,anoy 就是 anonymous,匿名的意思,映射到文件就需要有 vm_file 指定被映射的文件。

那这些 vm_area_struct 是如何和上面的内存区域关联的呢?

这个事情是在 load_elf_binary 里面实现的。没错,就是它。加载内核的是它,启动第一个用户态进程 init 的是它,fork 完了以后,调用 exec 运行一个二进制程序的也是它。

当 exec 运行一个二进制程序的时候,除了解析 ELF 的格式之外,另外一个重要的事情就是建立内存映射。

static int load_elf_binary(struct linux_binprm *bprm)
{
......
setup_new_exec(bprm);
......
retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
executable_stack);
......
error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
elf_prot, elf_flags, total_size);
......
retval = set_brk(elf_bss, elf_brk, bss_prot);
......
elf_entry = load_elf_interp(&loc->interp_elf_ex,
interpreter,
&interp_map_addr,
load_bias, interp_elf_phdata);
......
current->mm->end_code = end_code;
current->mm->start_code = start_code;
current->mm->start_data = start_data;
current->mm->end_data = end_data;
current->mm->start_stack = bprm->p;
......
}

load_elf_binary 会完成以下的事情:

  • 调用 setup_new_exec,设置内存映射区 mmap_base;

  • 调用 setup_arg_pages,设置栈的 vm_area_struct,这里面设置了 mm->arg_start 是指向栈底的,current->mm->start_stack 就是栈底;

  • elf_map 会将 ELF 文件中的代码部分映射到内存中来;

  • set_brk 设置了堆的 vm_area_struct,这里面设置了 current->mm->start_brk = current->mm->brk,也即堆里面还是空的;

  • load_elf_interp 将依赖的 so 映射到内存中的内存映射区域。

最终就形成下面这个内存映射图。

映射完毕后,什么情况下会修改呢?

第一种情况是函数的调用,涉及函数栈的改变,主要是改变栈顶指针。

第二种情况是通过 malloc 申请一个堆内的空间,当然底层要么执行 brk,要么执行 mmap。关于内存映射的部分,我们后面的章节讲,这里我们重点看一下 brk 是怎么做的。

brk 系统调用实现的入口是 sys_brk 函数,就像下面代码定义的一样。

SYSCALL_DEFINE1(brk, unsigned long, brk)
{
unsigned long retval;
unsigned long newbrk, oldbrk;
struct mm_struct *mm = current->mm;
struct vm_area_struct *next;
......
newbrk = PAGE_ALIGN(brk);
oldbrk = PAGE_ALIGN(mm->brk);
if (oldbrk == newbrk)
goto set_brk;
/* Always allow shrinking brk. */
if (brk <= mm->brk) {
if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
goto set_brk;
goto out;
}
/* Check against existing mmap mappings. */
next = find_vma(mm, oldbrk);
if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
goto out;
/* Ok, looks good - let it rip. */
if (do_brk(oldbrk, newbrk-oldbrk, &uf) < 0)
goto out;
set_brk:
mm->brk = brk;
......
return brk;
out:
retval = mm->brk;
return retval

前面我们讲过了,堆是从低地址向高地址增长的,sys_brk 函数的参数 brk 是新的堆顶位置,而当前的 mm->brk 是原来堆顶的位置。

首先要做的第一个事情,将原来的堆顶和现在的堆顶,都按照页对齐地址,然后比较大小。如果两者相同,说明这次增加的堆的量很小,还在一个页里面,不需要另行分配页,直接跳到 set_brk 那里,设置 mm->brk 为新的 brk 就可以了。

如果发现新旧堆顶不在一个页里面,麻烦了,这下要跨页了。如果发现新堆顶小于旧堆顶,这说明不是新分配内存了,而是释放内存了,释放的还不小,至少释放了一页,于是调用 do_munmap 将这一页的内存映射去掉。

如果堆将要扩大,就要调用 find_vma。如果打开这个函数,看到的是对红黑树的查找,找到的是原堆顶所在的 vm_area_struct 的下一个 vm_area_struct,看当前的堆顶和下一个 vm_area_struct 之间还能不能分配一个完整的页。如果不能,没办法只好直接退出返回,内存空间都被占满了。

如果还有空间,就调用 do_brk 进一步分配堆空间,从旧堆顶开始,分配计算出的新旧堆顶之间的页数。

static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf)
{
return do_brk_flags(addr, len, 0, uf);
}
static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, struct list_head *uf)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma, *prev;
unsigned long len;
struct rb_node **rb_link, *rb_parent;
pgoff_t pgoff = addr >> PAGE_SHIFT;
int error;
len = PAGE_ALIGN(request);
......
find_vma_links(mm, addr, addr + len, &prev, &rb_link,
&rb_parent);
......
vma = vma_merge(mm, prev, addr, addr + len, flags,
NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
if (vma)
goto out;
......
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
INIT_LIST_HEAD(&vma->anon_vma_chain);
vma->vm_mm = mm;
vma->vm_start = addr;
vma->vm_end = addr + len;
vma->vm_pgoff = pgoff;
vma->vm_flags = flags;
vma->vm_page_prot = vm_get_page_prot(flags);
vma_link(mm, vma, prev, rb_link, rb_parent);
out:
perf_event_mmap(vma);
mm->total_vm += len >> PAGE_SHIFT;
mm->data_vm += len >> PAGE_SHIFT;
if (flags & VM_LOCKED)
mm->locked_vm += (len >> PAGE_SHIFT);
vma->vm_flags |= VM_SOFTDIRTY;
return 0;

在 do_brk 中,调用 find_vma_links 找到将来的 vm_area_struct 节点在红黑树的位置,找到它的父节点、前序节点。接下来调用 vma_merge,看这个新节点是否能够和现有树中的节点合并。如果地址是连着的,能够合并,则不用创建新的 vm_area_struct 了,直接跳到 out,更新统计值即可;如果不能合并,则创建新的 vm_area_struct,既加到 anon_vma_chain 链表中,也加到红黑树中。

内核态的布局

用户态虚拟空间分析完毕,接下来我们分析内核态虚拟空间。

内核态的虚拟空间和某一个进程没有关系,所有进程通过系统调用进入到内核之后,看到的虚拟地址空间都是一样的。

这里强调一下,千万别以为到了内核里面,咱们就会直接使用物理内存地址了,想当然地认为下面讨论的都是物理内存地址,不是的,这里讨论的还是虚拟内存地址,但是由于内核总是涉及管理物理内存,因而总是隐隐约约发生关系,所以这里必须思路清晰,分清楚物理内存地址和虚拟内存地址。

在内核态,32 位和 64 位的布局差别比较大,主要是因为 32 位内核态空间太小了。

我们来看 32 位的内核态的布局。


32 位的内核态虚拟地址空间一共就 1G,占绝大部分的前 896M,我们称为直接映射区

所谓的直接映射区,就是这一块空间是连续的,和物理内存是非常简单的映射关系,其实就是虚拟内存地址减去 3G,就得到物理内存的位置。

在内核里面,有两个宏:

  • __pa(vaddr) 返回与虚拟地址 vaddr 相关的物理地址;

  • __va(paddr) 则计算出对应于物理地址 paddr 的虚拟地址。

#define __va(x)			((void *)((unsigned long)(x)+PAGE_OFFSET))
#define __pa(x) __phys_addr((unsigned long)(x))
#define __phys_addr(x) __phys_addr_nodebug(x)
#define __phys_addr_nodebug(x) ((x) - PAGE_OFFSET)

但是你要注意,这里虚拟地址和物理地址发生了关联关系,在物理内存的开始的 896M 的空间,会被直接映射到 3G 至 3G+896M 的虚拟地址,这样容易给你一种感觉,是这些内存访问起来和物理内存差不多,别这样想,在大部分情况下,对于这一段内存的访问,在内核中,还是会使用虚拟地址的,并且将来也会为这一段空间建设页表,对这段地址的访问也会走上一节我们讲的分页地址的流程,只不过页表里面比较简单,是直接的一一对应而已。

这 896M 还需要仔细分解。在系统启动的时候,物理内存的前 1M 已经被占用了,从 1M 开始加载内核代码段,然后就是内核的全局变量、BSS 等,也是 ELF 里面涵盖的。这样内核的代码段,全局变量,BSS 也就会被映射到 3G 后的虚拟地址空间里面。具体的物理内存布局可以查看 /proc/iomem。

在内核运行的过程中,如果碰到系统调用创建进程,会创建 task_struct 这样的实例,内核的进程管理代码会将实例创建在 3G 至 3G+896M 的虚拟空间中,当然也会被放在物理内存里面的前 896M 里面,相应的页表也会被创建。

在内核运行的过程中,会涉及内核栈的分配,内核的进程管理的代码会将内核栈创建在 3G 至 3G+896M 的虚拟空间中,当然也就会被放在物理内存里面的前 896M 里面,相应的页表也会被创建。

896M 这个值在内核中被定义为 high_memory,在此之上常称为“高端内存”。这是个很笼统的说法,到底是虚拟内存的 3G+896M 以上的是高端内存,还是物理内存 896M 以上的是高端内存呢?

这里仍然需要辨析一下,高端内存是物理内存的概念。它仅仅是内核中的内存管理模块看待物理内存的时候的概念。前面我们也说过,在内核中,除了内存管理模块直接操作物理地址之外,内核的其他模块,仍然要操作虚拟地址,而虚拟地址是需要内存管理模块分配和映射好的。

假设咱们的电脑有 2G 内存,现在如果内核的其他模块想要访问物理内存 1.5G 的地方,应该怎么办呢?如果你觉得,我有 32 位的总线,访问个 2G 还不小菜一碟,这就错了。

首先,你不能使用物理地址。你需要使用内存管理模块给你分配的虚拟地址,但是虚拟地址的 0 到 3G 已经被用户态进程占用去了,你作为内核不能使用。因为你写 1.5G 的虚拟内存位置,一方面你不知道应该根据哪个进程的页表进行映射;另一方面,就算映射了也不是你真正想访问的物理内存的地方,所以你发现你作为内核,能够使用的虚拟内存地址,只剩下 1G 减去 896M 的空间了。

于是,我们可以将剩下的虚拟内存地址分成下面这几个部分。

在 896M 到 VMALLOC_START 之间有 8M 的空间。

VMALLOC_START 到 VMALLOC_END 之间称为内核动态映射空间,也即内核想像用户态进程一样 malloc 申请内存,在内核里面可以使用 vmalloc。假设物理内存里面,896M 到 1.5G 之间已经被用户态进程占用了,并且映射关系放在了进程的页表中,内核 vmalloc 的时候,只能从分配物理内存 1.5G 开始,就需要使用这一段的虚拟地址进行映射,映射关系放在专门给内核自己用的页表里面。

PKMAP_BASE 到 FIXADDR_START 的空间称为持久内核映射。使用 alloc_pages() 函数的时候,在物理内存的高端内存得到 struct page 结构,可以调用 kmap 将其在映射到这个区域。

FIXADDR_START 到 FIXADDR_TOP(0xFFFF F000) 的空间,称为固定映射区域,主要用于满足特殊需求。

在最后一个区域可以通过 kmap_atomic 实现临时内核映射。假设用户态的进程要映射一个文件到内存中,先要映射用户态进程空间的一段虚拟地址到物理内存,然后将文件内容写入这个物理内存供用户态进程访问。给用户态进程分配物理内存页可以通过 alloc_pages(),分配完毕后,按说将用户态进程虚拟地址和物理内存的映射关系放在用户态进程的页表中,就完事大吉了。这个时候,用户态进程可以通过用户态的虚拟地址,也即 0 至 3G 的部分,经过页表映射后访问物理内存,并不需要内核态的虚拟地址里面也划出一块来,映射到这个物理内存页。但是如果要把文件内容写入物理内存,这件事情要内核来干了,这就只好通过 kmap_atomic 做一个临时映射,写入物理内存完毕后,再 kunmap_atomic 来解映射即可。

32 位的内核态布局我们看完了,接下来我们再来看 64 位的内核布局。

其实 64 位的内核布局反而简单,因为虚拟空间实在是太大了,根本不需要所谓的高端内存,因为内核是 128T,根本不可能有物理内存超过这个值。

64 位的内存布局如图所示。


64 位的内核主要包含以下几个部分。

从 0xffff800000000000 开始就是内核的部分,只不过一开始有 8T 的空档区域。

从 __PAGE_OFFSET_BASE(0xffff880000000000) 开始的 64T 的虚拟地址空间是直接映射区域,也就是减去 PAGE_OFFSET 就是物理地址。虚拟地址和物理地址之间的映射在大部分情况下还是会通过建立页表的方式进行映射。

从 VMALLOC_START(0xffffc90000000000)开始到 VMALLOC_END(0xffffe90000000000)的 32T 的空间是给 vmalloc 的。

从 VMEMMAP_START(0xffffea0000000000)开始的 1T 空间用于存放物理页面的描述结构 struct page 的。

从 __START_KERNEL_map(0xffffffff80000000)开始的 512M 用于存放内核代码段、全局变量、BSS 等。这里对应到物理内存开始的位置,减去 __START_KERNEL_map 就能得到物理内存的地址。这里和直接映射区有点像,但是不矛盾,因为直接映射区之前有 8T 的空当区域,早就过了内核代码在物理内存中加载的位置。

到这里内核中虚拟空间的布局就介绍完了。

end



一口Linux 


关注,回复【1024】海量Linux资料赠送

精彩文章合集

文章推荐

【专辑】ARM
【专辑】粉丝问答
【专辑】所有原创
专辑linux入门
专辑计算机网络
专辑Linux驱动
【干货】嵌入式驱动工程师学习路线
【干货】Linux嵌入式所有知识点-思维导图


点击“阅读原文”查看更多分享,欢迎点分享、收藏、点赞、在看

一口Linux 写点代码,写点人生!
评论
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 73浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 78浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 68浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 120浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 102浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 98浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 125浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 103浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 87浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 116浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 111浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 58浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 119浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 175浏览
我要评论
1
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦