i.MXRT四位数系列Boot方式简介

电子森林 2019-12-13 07:00

  大家好,我是痞子衡,是正经搞技术的痞子。今天痞子衡给大家介绍的是飞思卡尔i.MX RT系列MCU的BootROM功能简介

  截止目前为止i.MX RT系列已开始供货的芯片有两款i.MXRT105x, i.MXRT102x,所以本文的研究对象便是这两款芯片,从参考手册来看,这两款芯片的BootROM功能差别不大,所以一篇文章可以概括这两款芯片的BootROM特性。

一、Boot基本原理

1.1 从内部FLASH启动

  Boot是任何一款MCU都有的特性。提及Boot,首先应该联想到的是FLASH,通常Cortex-M微控制器芯片内部一般都会集成FLASH(从FLASH分类上来看应该属于Parallel NOR FLASH),你的Application代码都是保存在FLASH里,每次上电CPU会自动从FLASH里获取Application代码并执行,这个行为就是Boot
  大家都知道,ARM Cortex-M内存使用的是统一编址,32bit总线的地址空间是4GB (0x00000000 - 0xFFFFFFFF)。打开最新的Arm®v6/7/8-M Architecture Reference Manual手册找到如下system address map表,你会发现ARM已经将这4GB空间内容给初步规划好了,各ARM Cortex-M微控制器厂商在设计芯片时一般都会遵守ARM规定。

  从上述system address map表中我们可以知道,ARM 4GB空间的前512MB(0x00000000 - 0x1FFFFFFF)规划为非易失性存储器空间。看到这,你是不是明白了为啥各大厂商生产的Cortex-M芯片内部FLASH地址总是从0x0开始,因为仅含FLASH的芯片上电启动默认都是从0x0地址开始获取Application的初始PC和SP开始Boot。

1.2 BootROM是什么

  大家是不是也会经常在芯片参考手册里看到BootROM的字眼,BootROM是什么?BootROM其实是芯片在出厂前固化在ROM里的一段Bootloader程序。这个Bootloader程序可以帮助你完成FLASH里的Application的更新,而不需要使用额外的外部编程/调试器(比如JLink),Bootloader一般提供UART/SPI/I2C/USB接口与上位机进行通信,与Bootloader配套使用的还有一个上位机软件,当芯片从BootROM启动后,通过这个上位机软件与BootROM建立连接,然后可以将你的Application代码(bin/s19/hex格式)下载进芯片FLASH。
  BootROM并不是每一款MCU都有的。以飞思卡尔Kinetis系列MCU为例,早期的Kinetis产品比如MKL25并不含ROM,第一款支持ROM的Kinetis芯片是2014年推出的MKL03,而恩智浦的LPC系列以及意法半导体的STM32系列MCU一般都是含ROM的。不同厂商芯片的ROM起始地址可能不一样(Kinetis ROM一般从0x1c000000开始,LPC ROM一般从0x03000000开始,STM32 ROM结束地址是0x1FFFFFFF)。

1.3 Boot Mode选择

  当芯片既有ROM也有FLASH的时候,便会出现Boot位置选择问题,标准术语称为Boot Mode。芯片上电CPU到底是先从FLASH启动还是先从ROM启动?关于这个问题,各芯片厂商的解决方案不一样
  Kinetis的Boot Mode由FLASH偏移地址0x40d处的值(上电系统会自动将这个值加载到FTFx_FOPT寄存器中)以及NMI pin共同决定。LPC的Boot Mode由ISP[1:0]以及VBUS pins决定。STM32的Boot Mode由BOOT[1:0] pins决定。
  下图为MK80的具体Boot Mode:


  下图为LPC54114的具体Boot Mode:

  下图为STM32F407的具体Boot Mode:

1.4 从内部SRAM启动

  SRAM存在于任何一款MCU中,它除了可以保存Application数据变量外,当然也可以存放Application代码以供CPU执行。但是SRAM是易失性存储器,存放的数据断电会丢失,所以从SRAM启动跟从FLASH/ROM启动性质不一样。
  从FLASH/ROM启动属于一级启动,不依赖除了Boot Mode选择之外的条件;而从SRAM启动属于二级启动,其需要外部引导一下才能完成。外部引导的方式有两种:一是借助于外部调试器,直接将Application下载进SRAM并将PC指向Application开始执行,其实这就是所谓的在SRAM调试;二是借助于FLASH/ROM中的Bootloader程序,Bootloader会将存放在FLASH(或其他非易失性存储器,或者从上位机直接接收)中的Application先加载到SRAM里然后Jump过去执行。

1.5 从外部存储器启动

  有些MCU并没有内部FLASH,所以会支持外接存储器,常见的外部存储器有QSPI NOR/NAND, SD/eMMC, SDRAM, Parallel NOR/NAND, SPI/I2C EEPROM等,MCU内部集成相应的存储器接口控制器,通过接口控制器可以轻松访问这些外部存储器。一个没有内部FLASH的MCU肯定会有ROM(BootROM),因为必须要借助BootROM才能Boot存储在外部存储器的Application,所以从外部存储器启动也属于二级启动
  那么怎么理解从外部存储器启动?需要弄明白以下几个问题:
  第一个问题:从外部NOR FLASH存储器启动(比如QSPI NOR/Parallel NOR/EEPROM)跟从内部FLASH启动有什么区别?最大的区别是从外部NOR FLASH启动本质上属于二级启动,其无法像内部FLASH那样直接启动,需要由Bootloader引导。即使技术上可以做到存储在外部NOR FLASH里的Application能够原地执行(XIP),但也需要Bootloader完成外部NOR FLASH的初始化以及XIP相关配置。
  第二个问题:从外部NAND FLASH存储器启动(比如QSPI NAND/Parallel NAND/SD/eMMC)跟从NOR FLASH启动有什么区别?最大的区别是NAND FLASH无法像NOR FLASH那样可以XIP执行,这是由NAND FLASH原理决定的,因为NAND FLASH是按Page访问的并且允许坏块的存在,这意味着CPU无法直接从NAND FLASH取指和执行,必须先由Bootloader将存放在NAND FLASH中的Application先全部拷贝到内部SRAM中,然后从SRAM启动执行。
  第三个问题:从外部SDRAM存储器启动跟从内部SRAM启动有什么区别?这里其实区别倒不大,两个都是易失性存储器,都无法直接启动,不过SRAM是直接挂在系统bus上,而SDRAM是挂在存储器接口控制器上,而后者需要Bootloader去做初始化。

二、i.MXRTyyyy Boot

  在第一部分里讲了Boot基本原理以及各种Boot方式,那么i.MXRT Boot到底属于哪一种?在回答这个问题之前我们先看一下i.MXRT102x的system memory map(i.MXRT105x也类似,区别是ITCM/DTCM/OCRAM的size是512KB)。

  从memory map里可以看到,i.MXRT支持存储类型一共有三种:一是96KB的ROM(即BootROM)、二是总容量3*256KB的RAM(OCRAM/DTCM/ITCM)、三是分配给外部存储器接口控制器(SEMC/QSPI)的2GB区域。看到这里你应该明白了,i.MXRT Boot方式主要是借助BootROM从外部存储器加载Application到内部SRAM/外部SDRAM/原地XIP执行
  那么i.MXRT到底支持从哪些外部存储器加载启动呢?翻看i.MXRT的参考手册里的System Boot章节,可以看到i.MXRT启动支持以下6种外部存储器:

  • Serial NOR Flash via FlexSPI

  • Serial NAND Flash via FlexSPI

  • Parallel NOR Flash via SEMC

  • RAW NAND Flash via SEMC

  • SD/MMC via uSDHC

  • SPI NOR/EEPROM via LPSPI

  其中Serial/Parallel NOR这两种Device可以XIP,其他4种Device无法XIP,需要拷贝到内部RAM或外接SDRAM里运行。关于具体如何从这6种Device启动,痞子衡下篇文章接着聊。

  至此,飞思卡尔i.MX RT系列MCU的BootROM功能痞子衡便介绍完毕了,掌声在哪里~~~


  • 硬禾小帮手 -硬件工程师的设计助手

  • 硬禾学堂 -硬件工程师的在线学习平台

电子森林 讲述电子工程师需要掌握的重要技能: PCB设计、FPGA应用、模拟信号链路、电源管理等等;不断刷新的行业新技术 - 树莓派、ESP32、Arduino等开源系统;随时代演进的热点应用 - 物联网、无人驾驶、人工智能....
评论 (0)
  •   无人机电磁环境效应仿真系统:深度剖析   一、系统概述   无人机电磁环境效应仿真系统,专为无人机在复杂电磁环境下的性能评估及抗干扰能力训练打造。借助高精度仿真技术,它模拟无人机在各类电磁干扰场景中的运行状态,为研发、测试与训练工作提供有力支撑。   应用案例   目前,已有多个无人机电磁环境效应仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁环境效应仿真系统。这些成功案例为无人机电磁环境效应仿真系统的推广和应用提供了有力支持。   二、系统功能  
    华盛恒辉l58ll334744 2025-04-17 15:51 64浏览
  • 近日,全球6G技术与产业生态大会(简称“全球6G技术大会”)在南京召开。紫光展锐应邀出席“空天地一体化与数字低空”平行论坛,并从6G通信、感知、定位等多方面分享了紫光展锐在6G前沿科技领域的创新理念及在空天地一体化技术方面的研发探索情况。全球6G技术大会是6G领域覆盖广泛、内容全面的国际会议。今年大会以“共筑创新 同享未来”为主题,聚焦6G愿景与关键技术、安全可信、绿色可持续发展等前沿主题,汇聚国内外24家企业、百余名国际知名高校与科研代表共同商讨如何推动全行业6G标准共识形成。6G迈入关键期,
    紫光展锐 2025-04-17 18:55 124浏览
  •   无人机蜂群电磁作战仿真系统软件,是专门用于模拟、验证无人机蜂群在电磁作战环境中协同、干扰、通信以及对抗等能力的工具。下面从功能需求、技术架构、典型功能模块、发展趋势及应用场景等方面展开介绍:   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提供了有力支持。   功能需求   电磁环境建模:模拟构建复杂多样的电磁环境,涵盖各类电磁干扰源与
    华盛恒辉l58ll334744 2025-04-17 16:49 62浏览
  • 一、行业背景与需求随着智能化技术的快速发展和用户对便捷性需求的提升,电动车行业正经历从传统机械控制向智能交互的转型。传统电动车依赖物理钥匙、遥控器和独立防盗装置,存在操作繁琐、功能单一、交互性差等问题。用户期待通过手机等智能终端实现远程控制、实时数据监控及个性化交互体验。为此,将蓝牙语音芯片集成至电动车中控系统,成为推动智能化升级的关键技术路径。二、方案概述本方案通过在电动车中控系统中集成WT2605C蓝牙语音芯片,构建一套低成本、高兼容性的智能交互平台,实现以下核心功能:手机互联控制:支持蓝牙
    广州唯创电子 2025-04-18 08:33 97浏览
  • 【摘要/前言】4月春日花正好,Electronica就在浪漫春日里,盛大启幕。2025年4月15-17日,慕尼黑上海电子展于上海新国际博览中心成功举办。伴随着AI、新能源汽车、半导体的热潮,今年的Electronica盛况空前。请跟随Samtec的视角,感受精彩时刻!【 Samtec展台:老虎的朋友圈技术派对】借天时、占地利、聚人和,Samtec 展台人气爆棚!每年展会与大家相聚,总能收获温暖与动力~Samtec展台位于W3展馆716展位,新老朋友相聚于此,俨然一场线下技术派对!前沿D
    电子资讯报 2025-04-17 11:38 34浏览
  •   北京华盛恒辉无人机电磁兼容模拟训练系统软件是专门用于模拟与分析无人机在复杂电磁环境中电磁兼容性(EMC)表现的软件工具。借助仿真技术,它能帮助用户评估无人机在电磁干扰下的性能,优化电磁兼容设计,保障无人机在复杂电磁环境中稳定运行。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为无人机电磁兼容模拟训练系统的推广和应用提供了有力支持。   系统功能   电磁环境建模:支持三维
    华盛恒辉l58ll334744 2025-04-17 15:10 52浏览
  • 置信区间反映的是“样本均值”这个统计量的不确定性,因此使用的是标准误(standard error),而不是直接用样本标准差(standard deviation)。标准误体现的是均值的波动程度,而样本标准差体现的是个体数据的波动程度,两者并非一回事,就如下图所显示的一样。下面优思学院会一步一步解释清楚:一、标准差和标准误,究竟差在哪?很多同学对“标准差”和“标准误”这两个概念傻傻分不清楚,但其实差别明显:标准差(Standard Deviation,σ或s):是衡量单个数据点相对于平均值波动的
    优思学院 2025-04-17 13:59 24浏览
  •   无人机蜂群电磁作战仿真系统全解析   一、系统概述   无人机蜂群电磁作战仿真系统是专业的仿真平台,用于模拟无人机蜂群在复杂电磁环境中的作战行为与性能。它构建虚拟电磁环境,模拟无人机蜂群执行任务时可能遇到的电磁干扰与攻击,评估作战效能和抗干扰能力,为其设计、优化及实战应用提供科学依据。   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-17 16:29 69浏览
  • 一、行业背景与需求智能门锁作为智能家居的核心入口,正从单一安防工具向多场景交互终端演进。随着消费者对便捷性、安全性需求的提升,行业竞争已从基础功能转向成本优化与智能化整合。传统门锁后板方案依赖多颗独立芯片(如MCU、电机驱动、通信模块、语音模块等),导致硬件复杂、功耗高、开发周期长,且成本压力显著。如何通过高集成度方案降低成本、提升功能扩展性,成为厂商破局关键。WTVXXX-32N语音芯片通过“单芯片多任务”设计,将语音播报、电机驱动、通信协议解析、传感器检测等功能整合于一体,为智能门锁后板提供
    广州唯创电子 2025-04-18 09:04 110浏览
  • 1. 在Ubuntu官网下载Ubuntu server  20.04版本https://releases.ubuntu.com/20.04.6/2. 在vmware下安装Ubuntu3. 改Ubuntu静态IP$ sudo vi /etc/netplan/00-installer-config.yaml# This is the network config written by 'subiquity'network:  renderer: networkd&nbs
    二月半 2025-04-17 16:27 66浏览
  •   无人机电磁兼容模拟训练系统软件:全方位剖析   一、系统概述   北京华盛恒辉无人机电磁兼容模拟训练系统软件,专为满足无人机于复杂电磁环境下的运行需求而打造,是一款专业训练工具。其核心功能是模拟无人机在电磁干扰(EMI)与电磁敏感度(EMS)环境里的运行状况,助力用户评估无人机电磁兼容性能,增强其在复杂电磁场景中的适应水平。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为
    华盛恒辉l58ll334744 2025-04-17 14:52 33浏览
  • 现阶段,Zigbee、Z-Wave、Thread、Wi-Fi与蓝牙等多种通信协议在智能家居行业中已得到广泛应用,但协议间互不兼容的通信问题仍在凸显。由于各协议自成体系、彼此割据,智能家居市场被迫催生出大量桥接器、集线器及兼容性软件以在不同生态的设备间构建通信桥梁,而这种现象不仅增加了智能家居厂商的研发成本与时间投入,还严重削减了终端用户的使用体验。为应对智能家居的生态割裂现象,家居厂商需为不同通信协议重复开发适配方案,而消费者则需面对设备入网流程繁琐、跨品牌功能阉割及兼容隐患等现实困境。在此背景
    华普微HOPERF 2025-04-17 17:53 49浏览
  • 自动驾驶技术的飞速发展,正在重新定义未来出行的边界。从感知到决策,从规划到控制,每一个环节都离不开海量、精准的高质量数据支撑。然而,随着传感器数量的增加和数据规模的指数级增长,行业正面临一系列挑战:多源传感器数据的时间同步难题、复杂数据格式的适配、测量技术的灵活性不足、设备集成周期冗长等,这些问题正成为自动驾驶研发与测试的“隐形瓶颈”。基于技术积累与行业洞察,本文分享一套创新的ADAS时空融合数据采集方案。通过硬件与软件的深度协同优化,能够很好地解决数据采集中的核心痛点,还为自动驾驶研发提供了高
    康谋 2025-04-17 09:54 45浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦