SOTIF中的定量分析

汽车电子与软件 2022-01-02 17:50


前言


在SOTIF中,如何定量地获取性能指标,以提升系统的功能表现,降低风险,是值得讨论的一个重点。

以车辆在直道中的发生误制动这个场景为例。导致车辆误制动的原因可能是多重的,比如由于雷达的感知误差,把前方100米的车辆探测成了80米,同时控制器的AEB算法过于保守,把雷达给的80米距离代进去发现达到了紧急制动的阈值,于是误制动发生了。

所以在分析性能指标之前,我们需要做好控制变量。比如想要分析感知系统性能指标,就要先假设执行器的性能是固定的,算法是固定的。以风险场景、控制算法、执行器性能为输入,才能定量地分析感知系统中相对距离,相对速度,角度等参数的性能指标。

我们就以误制动为例,来计算对感知系统相对距离和相对车速的性能指标要求。


场景定义


首先需要回答一个问题,什么是误制动?

那么如果本车前方有一辆车,且速度低于本车,两车在持续接近,那么何时AEB介入制动算是“好”的制动,何时介入又算是“误”制动呢?

在这里我们可以参考AEB TTC算法的数据。AEB系统会根据前方危险的紧急程度(实时TTC大小)做出不同的动作:预警、部分制动、全力制动

厂家设置的预警的TTC通常是2.7秒,因为经过一些论文的研究,如果在碰撞前2.5s给一个警告的话,考虑人的反应时间和刹车的距离,基本可以保证车辆刹停。而且经统计,在跟随前车时大多数驾驶员会在2.7s这个时间之前采取制动动作,故这个预警时间是可以被大多数驾驶员所接受的。

而AEB全力制动的TTC通常是1s左右,因为若此时驾驶员还未做出制动或转向动作,靠驾驶员避免碰撞已经不可能,必须靠AEB全力制动才能避免碰撞。我们认为当仅需要AEB预警时AEB发生制动是可以接受的,因为预警的目的也是让驾驶员去踩刹车(此时驾驶员踩刹车已经算晚了)。但是在连预警都不需要的时候发生制动,则是不可接受的。因为此时还未到需要AEB系统介入的时候,即当AEB不需要预警时发生了制动为误制动。

这样我们就得到了误制动场景的定义👇

直行时自车前方有前向行驶目标车,自车车速高于目标车,碰撞时间大于2.7s时自车发生制动,导致与后车追尾。



定量计算


有了风险场景的定义,我们还要确认使用的算法

我们假设AEB使用的是最基础的TTC算法TTC=相对距离/相对车速。预警的TTC时间是3秒(不重要),部分制动的TTC是1.6秒,全力制动的TTC是1s。

根据定义,那么允许的TTC误差是2.7-1.6=1.1s。已知TTC允许的误差,就可以计算得到相对距离和相对车速的允许误差范围。当然,两者的误差范围一定是有相关性的,如果距离精确点,车速可容忍的误差就大点,如下图所示。

 图1:相对距离与相对速度的关系 

从图中可以看出,相对距离和速度越大,允许的误差也越大,相对距离和速度越小,精度要求越严苛。为了做到风险的全覆盖,这里比较适合用百分比来表示误差。设距离S的误差是a,速度V的误差是b。

已知:

S/V=TTC=2.7;

S(1-a)/V(1+b)=1.6;


可得a和b的关系:

a=-0.59b+0.41


这样就得到了一个关于相对车速误差百分比和相对距离误差百分比的一个函数。可以取一组数据作为示例,a=29.2%,b=20%。这个精度要求看起来很大,但相对距离和相对速度较小时还是很严苛的。这里误差为什么不用绝对值表示,可以自己列一下公式试试看。


扩展


不同的算法会得到不同的计算结果。如下图所示,这个问题就转化成了当车辆实际处于Normal area时,距离和速度的误差不能导致系统进入Breaking area。其中Normal area来源于我们对误制动场景的定义。Breaking area长什么样子,则取决于所使用的AEB算法以及算法中标定的参数。

 图2:Normal area与Breaking area

到这里我们得到的是一个场景的分析结果,而不同的风险场景可以得到不同的结果。

比如弯道工况下的AEB算法除了距离和速度,还会用到横摆角速度;与他车轨迹交叉工况的AEB算法会引入相对角度;不同车道的车辆识别也会涉及到相对角度

根据不同的场景计算得到多组参数矩阵(值或函数),然后进行取交,最终就可以得到一组对感知系统的精度指标要求。


总体思路


在上一篇中,我们以误制动为例做了SOTIF的定量分析,根据误制动的风险场景以及AEB算法,计算得到了对感知系统相对距离和相对速度的精度指标要求的函数,并取了一组数据:距离精度要求29.2%,速度精度要求20%。

但是这个精度指标是不完整的,因为感知一定会有误差,谁都不能保证传感器能百分之百达到这个要求。所以在定义精度时,会有一个与之相对应的概率值,通常假设误差满足正态分布,概率值一般取 2 sigma或3 sigma。其含义是感知输出误差分布在精度指标范围内的概率为95.4%(2 sigma)或99.7%(3 sigma)。

首先,AEB有一个指标叫误报率,即在单位时间内误制动发生的概率,单位是h^-1。在ISO21448附录B中有关于AEB误报率指标计算的示例,其总体思想是要保证AEB系统误制动导致追尾的概率要小于人开车发生追尾的概率,即机器至少要比人开的好,这不是这篇文章讨论的重点,只要明白误报率的指标是可以知道的。

那么在多大的概率内满足精度指标才能满足整车AEB误报率的要求呢?有两个思路。

思路一是将误报率指标分解到各个参数(自上而下)。思路二是先给定一个概率(比如2 sigma),计算这个概率会导致的误报率(自下而上),看是否满足误报率目标。这里我们用第二种思路。

如果一个参数可以保证2 sigma满足精度指标,就意味着每一帧信号都会有95.4%的概率在精度阈值内,4.6%的概率超过阈值。我们可把超过阈值的信号认为是“失效”,那么4.6%就理解为信号的失效率。但是直觉告诉我们,一帧信号的“失效”不一定会导致危害发生。我们需要知道信号怎样的“失效”会导致整车层级的危害,才能探究信号的失效率和AEB误报率的关系。

注:

笔者这里参考了ISO26262硬件部分的概念。失效率:指单位时间内元器件失效的概率。PMHF(Probabilistic Metric for random Hardware Failure):单位时间内发生单点故障或多点故障中多点都发生故障的概率。一个元器件失效不一定会导致危害,只有发生单点故障,或者多点故障中的“多点”都发生故障,才会导致危害。PMHF就是用来度量导致危害的硬件失效概率密度的指标。信号“失效率”与AEB误报率的关系,就可以类比成硬件元器件的失效率和PMHF的关系。



问题一


问:哪几种信号失效的组合会导致危害。

这涉及到在该场景下,误制动发生与几种信号相关。我们称与误制动风险相关的信号为安全相关信号。若误制动和一个以上参数相关,在一个信号周期内,多个安全相关信号同时失效的概率(P)为这几个信号的失效概率相乘。

(1)

n为安全相关信号的个数;
为每个安全相关信号单帧的失效率。


问题二


问:上述失效信号的组合发几帧会导致危害。

此时需要定义危害,ISO21448附录B中对非预期制动的定义是非预期制动持续时间超过340ms。我认为这里的340ms是和制动系统的性能相关的,制动系统建压需要一定时间,而340ms就是制动建压达到某个减速度阈值的时间,这个减速度阈值就是危害发生的边界,或者S>0的边界。340ms是个参考值,制动系统建压速率越快,这个时间越小。

然后往前推导,制动系统建压340ms,需要AEB连续发送制动请求信号340ms。那么感知系统连续发几帧失效信号,才会导致AEB系统持续发340ms制动信号?

这里就需要知道AEB算法里的判断逻辑,比如判定制动的debounce次数,判定停止制动的debounce次数,接收感知信号的周期,算法运行周期等。结果为感知系统连续发N帧失效信号,会导致AEB发送超过340ms的制动请求信号,进而导致危害发生。


问题三


通过前两个问题,已经知道发生危害的条件是所有安全相关信号同时发生“失效”连续若干帧。那么第三个问题是:

车辆运行多长时间才会发生一次“连续N个信号周期发生n个安全相关信号都失效”的事件?

这个问题可以简化成一道概率题:已知某事件X发生的概率为P,那么使事件X连续发生N次所需尝试次数是多少?通过解答问题一和问题二,P和N都是已知的。

假设E(n)为事件X连续发生N次所需尝试次数的期望,那么E(N)和E(N-1)有如下关系:
E(N)=E(N-1)+1+P*0+(1-P)*E(N);
经过转换可得到公式:                             

(2)


将P和N代入,即可求解尝试次数的期望。次数乘以信号周期就可以简单转换成时间、时间取倒数就是误报率。

可得误报率公式: 

(3)


R为误报率,单位h^-1;t为信号周期,单位ms。

注:公式(2)解释和推导:连续发生N次的前提是先连续发生N-1次,然后再发生一次。但是发生N-1次之后的这次尝试有两种可能,一是事件X发生了,则不需再次尝试(对应公式中P*0),二是事件X未发生,则需要从头开始再尝试E(N)次(对应公式中(1-P)*E(N))。

可整理得到:E(N)=(E(N-1)+1)/P;

已知E(1)=1/P;E(2)=(1+P)/P^2;

……

E(N)=(1+P+P^2+…+P^N-1)/P^N

分子为等比数列求和,可化简得:

E(N)=(1-P^N)/(P^N-P^N+1)



计算结果


以车辆在直道中的发生误制动这个场景为例。已知风险场景与相对距离和相对速度两个参数相关,相对距离和相对速度精度指标的概率都取2 sigma。那么,P=4.6%*4.6%=0.21%。

假设导致危害需要的连续帧数N=5,信号发送周期t=10ms。
得:E=2.45*10^13;R=(1.47*10^-8)h^-1。

即每发送2.45*10^13帧信号,会出现一次连续5帧距离速度两个信号都失效的事件。转换成时间就是6.82*10^7小时发生一次;误报率1.47*10^-8。拿这个值与误报率指标比较大小,若不能满足则提高精度要求(精度值或概率值)。

下面给出几组计算结果供参考。
 表1:一个安全相关信号(2 sigma) 

 表2:两个安全相关信号(2 sigma) 

由上表可见,与危害相关的信号越多,误报率越低。导致危害所需的信号连续失效次数越多,误报率越低。而且都是呈指数降低。这也对AEB的算法优化提供了参考。


总结


本文以误制动为例,探讨了精度指标中概率分布的取值计算方法。首先确定了总体思路是分析信号的失效率如何满足整车级误报率指标;然后将问题抽象成一个概率问题并推出误报率的计算公式;最后列出了几组计算结果。不足之处请指正。

END



作者简介

田野

曾任功能安全工程师,参与高低速智驾系统功能安全开发,底盘零件功能安全开发,以及预期功能安全预研项目,熟悉功能安全和预期功能安全分析方法,现从事嵌入式软件开发工作。



SASETECH专家申请(请扫右侧二维码提交)

微信交流群入群

(添加管理员微信,备注公司+姓名+研究领域)


SASETECH组织致力于推动功能安全、系统安全、网络安全、预期功能安全的业内交流和技术进步,打造全新智能网联汽车安全生态圈。欢迎加入!
汽车电子与软件 主要介绍汽车电子软件设计相关内容,每天分享一篇技术文章!
评论
  • 物联网(IoT)的快速发展彻底改变了从智能家居到工业自动化等各个行业。由于物联网系统需要高效、可靠且紧凑的组件来处理众多传感器、执行器和通信设备,国产固态继电器(SSR)已成为满足中国这些需求的关键解决方案。本文探讨了国产SSR如何满足物联网应用的需求,重点介绍了它们的优势、技术能力以及在现实场景中的应用。了解物联网中的固态继电器固态继电器是一种电子开关设备,它使用半导体而不是机械触点来控制负载。与传统的机械继电器不同,固态继电器具有以下优势:快速切换:确保精确快速的响应,这对于实时物联网系统至
    克里雅半导体科技 2025-01-03 16:11 165浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 161浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 7浏览
  • 车身域是指负责管理和控制汽车车身相关功能的一个功能域,在汽车域控系统中起着至关重要的作用。它涵盖了车门、车窗、车灯、雨刮器等各种与车身相关的功能模块。与汽车电子电气架构升级相一致,车身域发展亦可以划分为三个阶段,功能集成愈加丰富:第一阶段为分布式架构:对应BCM车身控制模块,包含灯光、雨刮、门窗等传统车身控制功能。第二阶段为域集中架构:对应BDC/CEM域控制器,在BCM基础上集成网关、PEPS等。第三阶段为SOA理念下的中央集中架构:VIU/ZCU区域控制器,在BDC/CEM基础上集成VCU、
    北汇信息 2025-01-03 16:01 173浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 20浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 16浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 15浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 157浏览
  • 在快速发展的能源领域,发电厂是发电的支柱,效率和安全性至关重要。在这种背景下,国产数字隔离器已成为现代化和优化发电厂运营的重要组成部分。本文探讨了这些设备在提高性能方面的重要性,同时展示了中国在生产可靠且具有成本效益的数字隔离器方面的进步。什么是数字隔离器?数字隔离器充当屏障,在电气上将系统的不同部分隔离开来,同时允许无缝数据传输。在发电厂中,它们保护敏感的控制电路免受高压尖峰的影响,确保准确的信号处理,并在恶劣条件下保持系统完整性。中国国产数字隔离器经历了重大创新,在许多方面达到甚至超过了全球
    克里雅半导体科技 2025-01-03 16:10 121浏览
  • 本文继续介绍Linux系统查看硬件配置及常用调试命令,方便开发者快速了解开发板硬件信息及进行相关调试。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。查看系统版本信息查看操作系统版本信息root@ido:/# cat /etc/*releaseDISTRIB_ID=UbuntuDISTRIB_RELEASE=20.04DISTRIB_CODENAME=focalDIS
    Industio_触觉智能 2025-01-03 11:37 138浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 18浏览
  • 在测试XTS时会遇到修改产品属性、SElinux权限、等一些内容,修改源码再编译很费时。今天为大家介绍一个便捷的方法,让OpenHarmony通过挂载镜像来修改镜像内容!触觉智能Purple Pi OH鸿蒙开发板演示。搭载了瑞芯微RK3566四核处理器,树莓派卡片电脑设计,支持开源鸿蒙OpenHarmony3.2-5.0系统,适合鸿蒙开发入门学习。挂载镜像首先,将要修改内容的镜像传入虚拟机当中,并创建一个要挂载镜像的文件夹,如下图:之后通过挂载命令将system.img镜像挂载到sys
    Industio_触觉智能 2025-01-03 11:39 113浏览
我要评论
1
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦