从最小二乘法到卡尔曼滤波

云脑智库 2021-12-29 00:00


来源 | 网络

智库 | 云脑智库(CloudBrain-TT)

云圈 | “云脑智库微信群”,请加微信:15881101905,备注您的研究方向

本文旨在梳理总结学习到的一些知识。由于笔者水平有限,文中难免存在一些不严谨和错误之处,诚请各位批评指正。

最近看了一篇文章,文章从最小二乘法的角度推导了卡尔曼滤波的公式(链接在文末)。看完后震惊不已,很受启发,于是写了这篇文章。一是为了倒逼输出从而达到知新的效果,二是为了记录一下自己的理解以便日后自己翻阅。

最小二乘法

最小二乘法是解决曲线拟合问题最常用的方法,本质是进行参数估计。实现方式是先使用待定系数法设出拟合函数,然后使用拟合函数和观测数据构造出目标函数来评估拟合效果,并取拟合效果最好时的拟合函数。拟合函数由参数和事先选定的一组线性无关的函数(这里我们姑且叫它基函数)构成,基函数已事先确定,求解拟合函数的问题便转变为参数估计的问题。
 是一组观测数据:
假定其噪声(随机变量) 分别为: 。
并且  ,噪声之间互不相关。
 为拟合函数,其中  为参数(也就是我们求解的重点) 为事先选定的一组线性无关的函数:
 为目标函数:
其中除以  的目的是加权,噪声方差越大的观测数据其权值越小,保证整体结果不会被个别噪声较大的数据所影响。同时也满足了高斯-马尔可夫定理的要求:
高斯-马尔可夫定理
在线性回归模型中,如果误差满足零均值、同方差且互不相关,则回归系数的最佳线性无偏估计BLUE, Best Linear Unbiased Estimator)就是普通最小二乘法估计。
我们的目的便是使  取到最小值,将此时得到的  作为最佳的拟合函数。
举个例子:
如马同学的这张图为例,图中的  至  便是观测数据并且每个都对应  轴上的一个坐标。通过观察我们可以取拟合函数为  ,其中  便是我们要估计的参数。
构造目标函数:
分别对  求偏导,当满足下式时目标函数  取到最小值,可求出参数  :
从而得到拟合函数  。当然如果你对拟合出的函数不满意,可以再取其他的函数作为拟合函数并去估计其参数。

一个简单的状态估计问题

还是这张图,不过这次我们给坐标轴一些物理意义。横坐标代表时间,纵坐标代表位置,我们将其视为一维的匀速运动目标的位置-时间图。你可以想象成一个小车沿着直线匀速前进,你每隔一段时间观测它一次并记录位置和时间数据。
分我们定义状态量  ,其中  代表目标所处的位置, 代表目标当前的速度。
观测数据  :
自然还有我们刚刚得出来的拟合函数 
自然还有我们刚刚得出来的拟合函数  。
不过在被赋予了物理意义之后它现在长这样: ,其中  代表函数与纵轴的截距,也就是  时刻时的位置, 代表目标的运动速度。不过我们对目标 0 时刻的位置不感兴趣,我们对它当前的状态估计值感兴趣,于是有:
其中  代表对当前目标位置的估计值, 代表对当前目标速度的估计值。这样的拟合函数  才是我们想要的,它包含了目标在  时刻的位置与速度。换句话说,我们通过这五个观测数据得到了目标在  时刻的状态估计值  。
于是,如果我们能继续获得更多的观测数据(一直到  ),那么有:
从而有:
于是:
其中  为  时刻下的观测矩阵,它将目标  时刻下的状态  转化观测值  。
这是个很怪的拟合函数,非常反直觉。它的观测方式似乎是使用最新的状态估计值,去获得其他时间节点上的观测值;如此一来它既是在对状态进行观测,又是实现了不同时刻间状态的转移。但我们根本不关心拟合函数本身,我们只关心构成它的参数。它的参数包含了目标当前时刻的状态估计值  。如果我们不断地继续获得数据,我们也能不断地对拟合函数的参数进行估计,从而得出目标最新的状态估计值。

铺垫

但是我们发现这个方法 太 慢 了。随着迭代推进,每一次迭代都需要用到历史的所有数据来估计目标当前的状态。也就是说随着运行时间增长,积累的历史数据越多,计算出目标当前状态估计值所需要的时间也就越长。
我们先把最小二乘法拓展为矩阵形式来看一看。
将历史观测量合起来:
观测噪声:
同理,也把对应的观测矩阵合起来:
对于目标函数:
虽然变成了矩阵形式,但最小二乘法的思想没有变,通过类比一维的情况可以快速的理解矩阵形式。 
我们不妨来实实在在的求一下矩阵形式下拟合函数的参数。
在当前我们已经有  个观测数据的情况下,我们对当前目标的状态估计量求导,并令其为零:
于是就有:
上式中的  便是我们目前获得到的观测量数量,可见随着迭代的进行我们的运算量会越来越大。
我们肯定无法接受这一点!
所以我们还需要更进一步。

递推最小二乘法

我们的目的就是避免运算量随着时间而增长,所以必须想方设法将  改为递推形式。换句话说,只使用  时刻的各种数据来推算  时刻的状态,而不是像现在这样将所有的历史信息全部用上。但是忘记历史意味着背叛,所以我们选一个折中的办法——“只送大脑”,我们可以递推地求解目标每个时刻状态的协方差矩阵。这样可以将历史信息蕴含在协方差矩阵中,达到我们的目的。
对于:
有以下性质:
于是求解  的协方差矩阵   :

其中:
所以:
并且我们发现  。
然后我们把  拆开可以看到:
记  于是有状态协方差矩阵递推公式:
同理把  拆开可得:
并且我们知道  ,于是推理可得:
于是:
至此我们得到了以下公式:
式  的形式非常有趣,它以  为基准,并通过  的方式来估计  时刻观测量的误差(  表示对  时刻观测量的估计),最后乘以  并补偿到  上。我们一般称  这样的系数为观测增益。这种综合了观测数据与状态数据的计算方式已经有些接近卡尔曼滤波了,但是只有更新过程,几乎没有预测过程。比如在  式中的  和  式中的  完全可以替换成由他们自己经过预测后得出的  时刻的估计量,然后再进行更新,这也是卡尔曼滤波的思想之一。
问题的根源在于我们怪异而又反直觉的观测矩阵。它虽然叫观测矩阵,但它耦合了观测与状态转移两个功能。观测指的是将状态量转化为观测量的过程,状态转移指的是将某时刻的状态转化为另一个时刻的状态。与卡尔曼滤波相比,递推最小二乘法在整个递推过程中缺少了程噪声。所以我们需要对其进行解耦合,重新定义观测矩阵与状态转移矩阵。

从最小二乘法到卡尔曼滤波

让我们先用正常的方式来描述目标状态的递推过程:
 为状态转移矩阵,它可以将  时刻的状态转变为  时刻的。其中  为目标在  时刻的先验状态量,也就是说它是我们使用  时刻的状态预测得来的。 为  时刻的后验状态量,也就是经过上轮递推后得到的  时刻的最优状态估计值。
同时我们用  来表示过程噪声,其中  代表位置噪声, 代表速度噪声,且有:
注意,我们将  视为一个随机变量,且有:
同时设
并称  为过程噪声协方差矩阵。
现在我们再去求一次状态协方差矩阵:
其中:
但要注意的是此时(  时刻)计算的状态协方差矩阵为先验状态协方差矩阵  ,也就是我们根据  时刻的状态协方差矩阵推算得出的。
现在我们获得了预测过程的公式:
从而对应的更新过程公式应该改写为:
发现式  到  中只出现过  ,也就是观测矩阵的下标只有  。观测矩阵在下标为 (也就是最新的时刻)时只具有观测意义,不存在状态转移。因为在定义时观测矩阵  的意义是将最新时刻  目标的状态转变为  时刻的观测量(可以看二、中举的例子),当  时便只有观测意义。于是我们不需要重新定义观测矩阵,当前的式子符合我们的要求。

总结

最小二乘法求解最小目标函数的过程与卡尔曼滤波中求解协方差矩阵迹的最小值的过程非常相似,只不过最小二乘法是使用所有数据来进行优化,而卡尔曼滤波通过对迹求导来获得最优卡尔曼增益。我们可以通过构造特殊拟合函数的方式来让最小二乘法来递推运作,从而只传递状态噪声。然后定义状态转移过程,并加入过程噪声来描述状态转移误差。
相比使用贝叶斯公式与正态分布假设来推导卡尔曼滤波,最小二乘法推导的条件更为宽松。使用贝叶斯公式来推导时需要假设所有的噪声服从正态分布,而最小二乘法推导仅需要满足高斯-马尔可夫定理(噪声零均值、同方差、不相关)即可。当然推导卡尔曼滤波的方法并不只这两种,但了解的越多理解越深刻,对学习也更有帮助。
从递推最小二乘法推导出卡尔曼滤波的过程并不严谨,直接使用先验估计来替换掉递推最小二乘法中的一些项。如果以后有更加严谨的方式我会补上证明。

参考文献

[1] https://zhuanlan.zhihu.com/p/67250500
[2] https://zhuanlan.zhihu.com/p/339118204
[3] https://www.zhihu.com/question/37031188/answer/411760828

来源:PaperWeekly

- The End

声明:欢迎转发本号原创内容,转载和摘编需经本号授权并标注原作者和信息来源为云脑智库。本公众号目前所载内容为本公众号原创、网络转载或根据非密公开性信息资料编辑整理,相关内容仅供参考及学习交流使用。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请跟我们联系。我们致力于保护作者知识产权或作品版权,本公众号所载内容的知识产权或作品版权归原作者所有。本公众号拥有对此声明的最终解释权。

投稿/招聘/推广/合作/入群/赞助 请加微信:15881101905,备注关键词

“阅读是一种习惯,分享是一种美德,我们是一群专业、有态度的知识传播者.”

 阅读原文加入知识星球,发现更多精彩内容.

 分享💬 点赞👍 在看❤️@以“三连”行动支持优质内容! 

云脑智库 努力是一种生活态度,与年龄无关!专注搬运、分享、发表雷达、卫通、通信、化合物半导体等技术应用、行业调研、前沿技术探索!专注相控阵、太赫兹、微波光子、光学等前沿技术学习、分享
评论
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 70浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 70浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 106浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 65浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 51浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 66浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 86浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 167浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 102浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 83浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 98浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 41浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 37浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 168浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦