从最小二乘法到卡尔曼滤波

云脑智库 2021-12-29 00:00


来源 | 网络

智库 | 云脑智库(CloudBrain-TT)

云圈 | “云脑智库微信群”,请加微信:15881101905,备注您的研究方向

本文旨在梳理总结学习到的一些知识。由于笔者水平有限,文中难免存在一些不严谨和错误之处,诚请各位批评指正。

最近看了一篇文章,文章从最小二乘法的角度推导了卡尔曼滤波的公式(链接在文末)。看完后震惊不已,很受启发,于是写了这篇文章。一是为了倒逼输出从而达到知新的效果,二是为了记录一下自己的理解以便日后自己翻阅。

最小二乘法

最小二乘法是解决曲线拟合问题最常用的方法,本质是进行参数估计。实现方式是先使用待定系数法设出拟合函数,然后使用拟合函数和观测数据构造出目标函数来评估拟合效果,并取拟合效果最好时的拟合函数。拟合函数由参数和事先选定的一组线性无关的函数(这里我们姑且叫它基函数)构成,基函数已事先确定,求解拟合函数的问题便转变为参数估计的问题。
 是一组观测数据:
假定其噪声(随机变量) 分别为: 。
并且  ,噪声之间互不相关。
 为拟合函数,其中  为参数(也就是我们求解的重点) 为事先选定的一组线性无关的函数:
 为目标函数:
其中除以  的目的是加权,噪声方差越大的观测数据其权值越小,保证整体结果不会被个别噪声较大的数据所影响。同时也满足了高斯-马尔可夫定理的要求:
高斯-马尔可夫定理
在线性回归模型中,如果误差满足零均值、同方差且互不相关,则回归系数的最佳线性无偏估计BLUE, Best Linear Unbiased Estimator)就是普通最小二乘法估计。
我们的目的便是使  取到最小值,将此时得到的  作为最佳的拟合函数。
举个例子:
如马同学的这张图为例,图中的  至  便是观测数据并且每个都对应  轴上的一个坐标。通过观察我们可以取拟合函数为  ,其中  便是我们要估计的参数。
构造目标函数:
分别对  求偏导,当满足下式时目标函数  取到最小值,可求出参数  :
从而得到拟合函数  。当然如果你对拟合出的函数不满意,可以再取其他的函数作为拟合函数并去估计其参数。

一个简单的状态估计问题

还是这张图,不过这次我们给坐标轴一些物理意义。横坐标代表时间,纵坐标代表位置,我们将其视为一维的匀速运动目标的位置-时间图。你可以想象成一个小车沿着直线匀速前进,你每隔一段时间观测它一次并记录位置和时间数据。
分我们定义状态量  ,其中  代表目标所处的位置, 代表目标当前的速度。
观测数据  :
自然还有我们刚刚得出来的拟合函数 
自然还有我们刚刚得出来的拟合函数  。
不过在被赋予了物理意义之后它现在长这样: ,其中  代表函数与纵轴的截距,也就是  时刻时的位置, 代表目标的运动速度。不过我们对目标 0 时刻的位置不感兴趣,我们对它当前的状态估计值感兴趣,于是有:
其中  代表对当前目标位置的估计值, 代表对当前目标速度的估计值。这样的拟合函数  才是我们想要的,它包含了目标在  时刻的位置与速度。换句话说,我们通过这五个观测数据得到了目标在  时刻的状态估计值  。
于是,如果我们能继续获得更多的观测数据(一直到  ),那么有:
从而有:
于是:
其中  为  时刻下的观测矩阵,它将目标  时刻下的状态  转化观测值  。
这是个很怪的拟合函数,非常反直觉。它的观测方式似乎是使用最新的状态估计值,去获得其他时间节点上的观测值;如此一来它既是在对状态进行观测,又是实现了不同时刻间状态的转移。但我们根本不关心拟合函数本身,我们只关心构成它的参数。它的参数包含了目标当前时刻的状态估计值  。如果我们不断地继续获得数据,我们也能不断地对拟合函数的参数进行估计,从而得出目标最新的状态估计值。

铺垫

但是我们发现这个方法 太 慢 了。随着迭代推进,每一次迭代都需要用到历史的所有数据来估计目标当前的状态。也就是说随着运行时间增长,积累的历史数据越多,计算出目标当前状态估计值所需要的时间也就越长。
我们先把最小二乘法拓展为矩阵形式来看一看。
将历史观测量合起来:
观测噪声:
同理,也把对应的观测矩阵合起来:
对于目标函数:
虽然变成了矩阵形式,但最小二乘法的思想没有变,通过类比一维的情况可以快速的理解矩阵形式。 
我们不妨来实实在在的求一下矩阵形式下拟合函数的参数。
在当前我们已经有  个观测数据的情况下,我们对当前目标的状态估计量求导,并令其为零:
于是就有:
上式中的  便是我们目前获得到的观测量数量,可见随着迭代的进行我们的运算量会越来越大。
我们肯定无法接受这一点!
所以我们还需要更进一步。

递推最小二乘法

我们的目的就是避免运算量随着时间而增长,所以必须想方设法将  改为递推形式。换句话说,只使用  时刻的各种数据来推算  时刻的状态,而不是像现在这样将所有的历史信息全部用上。但是忘记历史意味着背叛,所以我们选一个折中的办法——“只送大脑”,我们可以递推地求解目标每个时刻状态的协方差矩阵。这样可以将历史信息蕴含在协方差矩阵中,达到我们的目的。
对于:
有以下性质:
于是求解  的协方差矩阵   :

其中:
所以:
并且我们发现  。
然后我们把  拆开可以看到:
记  于是有状态协方差矩阵递推公式:
同理把  拆开可得:
并且我们知道  ,于是推理可得:
于是:
至此我们得到了以下公式:
式  的形式非常有趣,它以  为基准,并通过  的方式来估计  时刻观测量的误差(  表示对  时刻观测量的估计),最后乘以  并补偿到  上。我们一般称  这样的系数为观测增益。这种综合了观测数据与状态数据的计算方式已经有些接近卡尔曼滤波了,但是只有更新过程,几乎没有预测过程。比如在  式中的  和  式中的  完全可以替换成由他们自己经过预测后得出的  时刻的估计量,然后再进行更新,这也是卡尔曼滤波的思想之一。
问题的根源在于我们怪异而又反直觉的观测矩阵。它虽然叫观测矩阵,但它耦合了观测与状态转移两个功能。观测指的是将状态量转化为观测量的过程,状态转移指的是将某时刻的状态转化为另一个时刻的状态。与卡尔曼滤波相比,递推最小二乘法在整个递推过程中缺少了程噪声。所以我们需要对其进行解耦合,重新定义观测矩阵与状态转移矩阵。

从最小二乘法到卡尔曼滤波

让我们先用正常的方式来描述目标状态的递推过程:
 为状态转移矩阵,它可以将  时刻的状态转变为  时刻的。其中  为目标在  时刻的先验状态量,也就是说它是我们使用  时刻的状态预测得来的。 为  时刻的后验状态量,也就是经过上轮递推后得到的  时刻的最优状态估计值。
同时我们用  来表示过程噪声,其中  代表位置噪声, 代表速度噪声,且有:
注意,我们将  视为一个随机变量,且有:
同时设
并称  为过程噪声协方差矩阵。
现在我们再去求一次状态协方差矩阵:
其中:
但要注意的是此时(  时刻)计算的状态协方差矩阵为先验状态协方差矩阵  ,也就是我们根据  时刻的状态协方差矩阵推算得出的。
现在我们获得了预测过程的公式:
从而对应的更新过程公式应该改写为:
发现式  到  中只出现过  ,也就是观测矩阵的下标只有  。观测矩阵在下标为 (也就是最新的时刻)时只具有观测意义,不存在状态转移。因为在定义时观测矩阵  的意义是将最新时刻  目标的状态转变为  时刻的观测量(可以看二、中举的例子),当  时便只有观测意义。于是我们不需要重新定义观测矩阵,当前的式子符合我们的要求。

总结

最小二乘法求解最小目标函数的过程与卡尔曼滤波中求解协方差矩阵迹的最小值的过程非常相似,只不过最小二乘法是使用所有数据来进行优化,而卡尔曼滤波通过对迹求导来获得最优卡尔曼增益。我们可以通过构造特殊拟合函数的方式来让最小二乘法来递推运作,从而只传递状态噪声。然后定义状态转移过程,并加入过程噪声来描述状态转移误差。
相比使用贝叶斯公式与正态分布假设来推导卡尔曼滤波,最小二乘法推导的条件更为宽松。使用贝叶斯公式来推导时需要假设所有的噪声服从正态分布,而最小二乘法推导仅需要满足高斯-马尔可夫定理(噪声零均值、同方差、不相关)即可。当然推导卡尔曼滤波的方法并不只这两种,但了解的越多理解越深刻,对学习也更有帮助。
从递推最小二乘法推导出卡尔曼滤波的过程并不严谨,直接使用先验估计来替换掉递推最小二乘法中的一些项。如果以后有更加严谨的方式我会补上证明。

参考文献

[1] https://zhuanlan.zhihu.com/p/67250500
[2] https://zhuanlan.zhihu.com/p/339118204
[3] https://www.zhihu.com/question/37031188/answer/411760828

来源:PaperWeekly

- The End

声明:欢迎转发本号原创内容,转载和摘编需经本号授权并标注原作者和信息来源为云脑智库。本公众号目前所载内容为本公众号原创、网络转载或根据非密公开性信息资料编辑整理,相关内容仅供参考及学习交流使用。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请跟我们联系。我们致力于保护作者知识产权或作品版权,本公众号所载内容的知识产权或作品版权归原作者所有。本公众号拥有对此声明的最终解释权。

投稿/招聘/推广/合作/入群/赞助 请加微信:15881101905,备注关键词

“阅读是一种习惯,分享是一种美德,我们是一群专业、有态度的知识传播者.”

 阅读原文加入知识星球,发现更多精彩内容.

 分享💬 点赞👍 在看❤️@以“三连”行动支持优质内容! 

云脑智库 努力是一种生活态度,与年龄无关!专注搬运、分享、发表雷达、卫通、通信、化合物半导体等技术应用、行业调研、前沿技术探索!专注相控阵、太赫兹、微波光子、光学等前沿技术学习、分享
评论 (0)
  •   海上电磁干扰训练系统:全方位解析      海上电磁干扰训练系统,作为模拟复杂海上电磁环境、锻炼人员应对电磁干扰能力的关键技术装备,在军事、科研以及民用等诸多领域广泛应用。接下来从系统构成、功能特点、技术原理及应用场景等方面展开详细解析。   应用案例   系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。   一、系统构成   核心组件   电磁信号模拟设备:负责生成各类复杂的电磁信号,模拟海上多样
    华盛恒辉l58ll334744 2025-04-10 16:45 185浏览
  • 文/Leon编辑/侯煜‍关税大战一触即发,当地时间4月9日起,美国开始对中国进口商品征收总计104%的关税。对此,中国外交部回应道:中方绝不接受美方极限施压霸道霸凌,将继续采取坚决有力措施,维护自身正当权益。同时,中国对原产于美国的进口商品加征关税税率,由34%提高至84%。随后,美国总统特朗普在社交媒体宣布,对中国关税立刻提高至125%,并暂缓其他75个国家对等关税90天,在此期间适用于10%的税率。特朗普政府挑起关税大战的目的,实际上是寻求制造业回流至美国。据悉,特朗普政府此次宣布对全球18
    华尔街科技眼 2025-04-10 16:39 145浏览
  •     前几天同事问我,电压到多少伏就不安全了?考虑到这位同事的非电专业背景,我做了最极端的答复——多少伏都不安全,非专业人员别摸带电的东西。    那么,是不是这么绝对呢?我查了一下标准,奇怪的知识增加了。    标准的名字值得玩味——《电流对人和家畜的效应》,GB/T 13870.5 (IEC 60749-5)。里面对人、牛、尸体分类讨论(搞硬件的牛马一时恍惚,不知道自己算哪种)。    触电是电流造成的生理效应
    电子知识打边炉 2025-04-09 22:35 243浏览
  • 行业痛点:电动车智能化催生语音交互刚需随着全球短途出行市场爆发式增长,中国电动自行车保有量已突破3.5亿辆。新国标实施推动行业向智能化、安全化转型,传统蜂鸣器报警方式因音效单一、缺乏场景适配性等问题,难以满足用户对智能交互体验的需求。WT2003HX系列语音芯片,以高性能处理器架构与灵活开发平台,为两轮电动车提供从基础报警到智能交互的全栈语音解决方案。WT2003HX芯片技术优势深度解读1. 高品质硬件性能,重塑语音交互标准搭载32位RISC处理器,主频高达120MHz,确保复杂算法流畅运行支持
    广州唯创电子 2025-04-10 09:12 204浏览
  • 背景近年来,随着国家对资源、能源有效利用率的要求越来越高,对环境保护和水处理的要求也越来越严格,因此有大量的固液分离问题需要解决。真空过滤器是是由负压形成真空过滤的固液分离机械。用过滤介质把容器分为上、下两层,利用负压,悬浮液加入上腔,在压力作用下通过过滤介质进入下腔成为滤液,悬浮液中的固体颗粒吸附在过滤介质表面形成滤饼,滤液穿过过滤介质经中心轴内部排出,达到固液分离的目的。目前市面上的过滤器多分为间歇操作和连续操作两种。间歇操作的真空过滤机可过滤各种浓度的悬浮液,连续操作的真空过滤机适于过滤含
    宏集科技 2025-04-10 13:45 119浏览
  • 什么是车用高效能运算(Automotive HPC)?高温条件为何是潜在威胁?作为电动车内的关键核心组件,由于Automotive HPC(CPU)具备高频高效能运算电子组件、高速传输接口以及复杂运算处理、资源分配等诸多特性,再加上各种车辆的复杂应用情境等等条件,不难发见Automotive HPC对整个平台讯号传输实时处理、系统稳定度、耐久度、兼容性与安全性将造成多大的考验。而在各种汽车使用者情境之中,「高温条件」就是你我在日常生活中必然会面临到的一种潜在威胁。不论是长时间将车辆停放在室外的高
    百佳泰测试实验室 2025-04-10 15:09 109浏览
  •   天空卫星健康状况监测维护管理系统:全方位解析  在航天技术迅猛发展的当下,卫星在轨运行的安全与可靠至关重要。整合多种技术,实现对卫星的实时监测、故障诊断、健康评估以及维护决策,有力保障卫星长期稳定运转。  应用案例       系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。  一、系统架构与功能模块  数据采集层  数据处理层  智能分析层  决策支持层  二、关键技术  故障诊断技术  
    华盛恒辉l58ll334744 2025-04-10 15:46 117浏览
  •   卫星故障预警系统软件:卫星在轨安全的智能护盾   北京华盛恒辉卫星故障预警系统软件,作为确保卫星在轨安全运行的关键利器,集成前沿的监测、诊断及预警技术,对卫星健康状况予以实时评估,提前预判潜在故障。下面将从核心功能、技术特性、应用场景以及发展走向等方面展开详尽阐述。   应用案例   目前,已有多个卫星故障预警系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润卫星故障预警系统。这些成功案例为卫星故障预警系统的推广和应用提供了有力支持。   核心功能   实时状态监测:
    华盛恒辉l58ll334744 2025-04-09 19:49 188浏览
  • ‌亥姆霍兹线圈‌是由两组相同的线圈组成,线圈之间的距离等于它们的半径。当电流同时流过这两个线圈时,会在它们中间形成一个几乎均匀的磁场。这种设计克服了普通线圈磁场不均匀的缺陷,能够在中心区域形成稳定、均匀的磁场‌。‌亥姆霍兹线圈的应用领域‌包括材料、电子、生物、医疗、航空航天、化学、应用物理等各个学科。由于其操作简便且能够提供极微弱的磁场直至数百高斯的磁场,亥姆霍兹线圈在各研究所、高等院校及企业中被广泛用于物质磁性或检测实验。‌‌亥姆霍兹线圈的用途非常广泛,主要包括以下几个方面‌:‌粒子物理实验‌
    锦正茂科技 2025-04-09 17:04 115浏览
  • 行业变局:从机械仪表到智能交互终端的跃迁全球两轮电动车市场正经历从“功能机”向“智能机”的转型浪潮。数据显示,2024年智能电动车仪表盘渗透率已突破42%,而传统LED仪表因交互单一、扩展性差等问题,难以满足以下核心需求:适老化需求:35%中老年用户反映仪表信息辨识困难智能化缺口:78%用户期待仪表盘支持手机互联与语音交互成本敏感度:厂商需在15元以内BOM成本实现功能升级在此背景下,集成语音播报与蓝牙互联的WT2605C-32N芯片方案,以“极简设计+智能交互”重构仪表盘技术生态链。技术破局:
    广州唯创电子 2025-04-11 08:59 172浏览
  • 由西门子(Siemens)生产的SIMATIC S7 PLC在SCADA 领域发挥着至关重要的作用。在众多行业中,SCADA 应用都需要与这些 PLC 进行通信。那么,有哪些高效可行的解决方案呢?宏集为您提供多种选择。传统方案:通过OPC服务器与西门子 PLC 间接通信SIMATIC S7系列的PLC是工业可编程控制器,能够实现对生产流程的实时SCADA监控,提供关于设备和流程状态的准确、最新数据。S7Comm(全称S7 Communication),也被称为工业以太网或Profinet,是西门
    宏集科技 2025-04-10 13:44 136浏览
  • 技术原理:非扫描式全局像的革新Flash激光雷达是一种纯固态激光雷达技术,其核心原理是通过面阵激光瞬时覆盖探测区域,配合高灵敏度传感器实现全局三维成像。其工作流程可分解为以下关键环节:1. 激光发射:采用二维点阵光源(如VCSEL垂直腔面发射激光器),通过光扩散器在单次脉冲中发射覆盖整个视场的面阵激光,视场角通常可达120°×75°,部分激光雷达产品可以做到120°×90°的超大视场角。不同于传统机械扫描或MEMS微振镜方案,Flash方案无需任何移动部件,直接通过电信号控制激光发射模式。2.
    robolab 2025-04-10 15:30 139浏览
  •   卫星故障预警系统:守护卫星在轨安全的 “瞭望塔”   卫星故障预警系统作为保障卫星在轨安全运行的核心技术,集成多源数据监测、智能诊断算法与预警响应机制,实时监控卫星关键系统状态,精准预判故障。下面从系统架构、技术原理、应用场景以及发展趋势这四个关键维度展开深入解析。   应用案例   目前,已有多个卫星故障预警系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润卫星故障预警系统。这些成功案例为卫星故障预警系统的推广和应用提供了有力支持。   系统架构与组成   卫星故障
    华盛恒辉l58ll334744 2025-04-09 17:18 144浏览
  • ‌亥姆霍兹线圈‌是由两组相同的线圈组成,线圈之间的距离等于它们的半径。当电流同时流过这两个线圈时,会在它们中间形成一个几乎均匀的磁场。这种设计克服了普通线圈磁场不均匀的缺陷,能够在中心区域形成稳定、均匀的磁场‌。‌亥姆霍兹线圈的应用领域‌包括材料、电子、生物、医疗、航空航天、化学、应用物理等各个学科。由于其操作简便且能够提供极微弱的磁场直至数百高斯的磁场,亥姆霍兹线圈在各研究所、高等院校及企业中被广泛用于物质磁性或检测实验。‌亥姆霍兹线圈可以根据不同的标准进行分类‌:‌按磁场方向分类‌:‌一维亥
    锦正茂科技 2025-04-09 17:20 163浏览
  • 政策驱动,AVAS成新能源车安全刚需随着全球碳中和目标的推进,新能源汽车产业迎来爆发式增长。据统计,2023年中国新能源汽车渗透率已突破35%,而欧盟法规明确要求2024年后新能效车型必须配备低速提示音系统(AVAS)。在此背景下,低速报警器作为车辆主动安全的核心组件,其技术性能直接关乎行人安全与法规合规性。基于WT2003H芯片开发的AVAS解决方案,以高可靠性、强定制化能力及智能场景适配特性,正成为行业技术升级的新标杆。WT2003H方案技术亮点解析全场景音效精准触发方案通过多传感器融合技术
    广州唯创电子 2025-04-10 08:53 232浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦