从最小二乘法到卡尔曼滤波

云脑智库 2021-12-29 00:00


来源 | 网络

智库 | 云脑智库(CloudBrain-TT)

云圈 | “云脑智库微信群”,请加微信:15881101905,备注您的研究方向

本文旨在梳理总结学习到的一些知识。由于笔者水平有限,文中难免存在一些不严谨和错误之处,诚请各位批评指正。

最近看了一篇文章,文章从最小二乘法的角度推导了卡尔曼滤波的公式(链接在文末)。看完后震惊不已,很受启发,于是写了这篇文章。一是为了倒逼输出从而达到知新的效果,二是为了记录一下自己的理解以便日后自己翻阅。

最小二乘法

最小二乘法是解决曲线拟合问题最常用的方法,本质是进行参数估计。实现方式是先使用待定系数法设出拟合函数,然后使用拟合函数和观测数据构造出目标函数来评估拟合效果,并取拟合效果最好时的拟合函数。拟合函数由参数和事先选定的一组线性无关的函数(这里我们姑且叫它基函数)构成,基函数已事先确定,求解拟合函数的问题便转变为参数估计的问题。
 是一组观测数据:
假定其噪声(随机变量) 分别为: 。
并且  ,噪声之间互不相关。
 为拟合函数,其中  为参数(也就是我们求解的重点) 为事先选定的一组线性无关的函数:
 为目标函数:
其中除以  的目的是加权,噪声方差越大的观测数据其权值越小,保证整体结果不会被个别噪声较大的数据所影响。同时也满足了高斯-马尔可夫定理的要求:
高斯-马尔可夫定理
在线性回归模型中,如果误差满足零均值、同方差且互不相关,则回归系数的最佳线性无偏估计BLUE, Best Linear Unbiased Estimator)就是普通最小二乘法估计。
我们的目的便是使  取到最小值,将此时得到的  作为最佳的拟合函数。
举个例子:
如马同学的这张图为例,图中的  至  便是观测数据并且每个都对应  轴上的一个坐标。通过观察我们可以取拟合函数为  ,其中  便是我们要估计的参数。
构造目标函数:
分别对  求偏导,当满足下式时目标函数  取到最小值,可求出参数  :
从而得到拟合函数  。当然如果你对拟合出的函数不满意,可以再取其他的函数作为拟合函数并去估计其参数。

一个简单的状态估计问题

还是这张图,不过这次我们给坐标轴一些物理意义。横坐标代表时间,纵坐标代表位置,我们将其视为一维的匀速运动目标的位置-时间图。你可以想象成一个小车沿着直线匀速前进,你每隔一段时间观测它一次并记录位置和时间数据。
分我们定义状态量  ,其中  代表目标所处的位置, 代表目标当前的速度。
观测数据  :
自然还有我们刚刚得出来的拟合函数 
自然还有我们刚刚得出来的拟合函数  。
不过在被赋予了物理意义之后它现在长这样: ,其中  代表函数与纵轴的截距,也就是  时刻时的位置, 代表目标的运动速度。不过我们对目标 0 时刻的位置不感兴趣,我们对它当前的状态估计值感兴趣,于是有:
其中  代表对当前目标位置的估计值, 代表对当前目标速度的估计值。这样的拟合函数  才是我们想要的,它包含了目标在  时刻的位置与速度。换句话说,我们通过这五个观测数据得到了目标在  时刻的状态估计值  。
于是,如果我们能继续获得更多的观测数据(一直到  ),那么有:
从而有:
于是:
其中  为  时刻下的观测矩阵,它将目标  时刻下的状态  转化观测值  。
这是个很怪的拟合函数,非常反直觉。它的观测方式似乎是使用最新的状态估计值,去获得其他时间节点上的观测值;如此一来它既是在对状态进行观测,又是实现了不同时刻间状态的转移。但我们根本不关心拟合函数本身,我们只关心构成它的参数。它的参数包含了目标当前时刻的状态估计值  。如果我们不断地继续获得数据,我们也能不断地对拟合函数的参数进行估计,从而得出目标最新的状态估计值。

铺垫

但是我们发现这个方法 太 慢 了。随着迭代推进,每一次迭代都需要用到历史的所有数据来估计目标当前的状态。也就是说随着运行时间增长,积累的历史数据越多,计算出目标当前状态估计值所需要的时间也就越长。
我们先把最小二乘法拓展为矩阵形式来看一看。
将历史观测量合起来:
观测噪声:
同理,也把对应的观测矩阵合起来:
对于目标函数:
虽然变成了矩阵形式,但最小二乘法的思想没有变,通过类比一维的情况可以快速的理解矩阵形式。 
我们不妨来实实在在的求一下矩阵形式下拟合函数的参数。
在当前我们已经有  个观测数据的情况下,我们对当前目标的状态估计量求导,并令其为零:
于是就有:
上式中的  便是我们目前获得到的观测量数量,可见随着迭代的进行我们的运算量会越来越大。
我们肯定无法接受这一点!
所以我们还需要更进一步。

递推最小二乘法

我们的目的就是避免运算量随着时间而增长,所以必须想方设法将  改为递推形式。换句话说,只使用  时刻的各种数据来推算  时刻的状态,而不是像现在这样将所有的历史信息全部用上。但是忘记历史意味着背叛,所以我们选一个折中的办法——“只送大脑”,我们可以递推地求解目标每个时刻状态的协方差矩阵。这样可以将历史信息蕴含在协方差矩阵中,达到我们的目的。
对于:
有以下性质:
于是求解  的协方差矩阵   :

其中:
所以:
并且我们发现  。
然后我们把  拆开可以看到:
记  于是有状态协方差矩阵递推公式:
同理把  拆开可得:
并且我们知道  ,于是推理可得:
于是:
至此我们得到了以下公式:
式  的形式非常有趣,它以  为基准,并通过  的方式来估计  时刻观测量的误差(  表示对  时刻观测量的估计),最后乘以  并补偿到  上。我们一般称  这样的系数为观测增益。这种综合了观测数据与状态数据的计算方式已经有些接近卡尔曼滤波了,但是只有更新过程,几乎没有预测过程。比如在  式中的  和  式中的  完全可以替换成由他们自己经过预测后得出的  时刻的估计量,然后再进行更新,这也是卡尔曼滤波的思想之一。
问题的根源在于我们怪异而又反直觉的观测矩阵。它虽然叫观测矩阵,但它耦合了观测与状态转移两个功能。观测指的是将状态量转化为观测量的过程,状态转移指的是将某时刻的状态转化为另一个时刻的状态。与卡尔曼滤波相比,递推最小二乘法在整个递推过程中缺少了程噪声。所以我们需要对其进行解耦合,重新定义观测矩阵与状态转移矩阵。

从最小二乘法到卡尔曼滤波

让我们先用正常的方式来描述目标状态的递推过程:
 为状态转移矩阵,它可以将  时刻的状态转变为  时刻的。其中  为目标在  时刻的先验状态量,也就是说它是我们使用  时刻的状态预测得来的。 为  时刻的后验状态量,也就是经过上轮递推后得到的  时刻的最优状态估计值。
同时我们用  来表示过程噪声,其中  代表位置噪声, 代表速度噪声,且有:
注意,我们将  视为一个随机变量,且有:
同时设
并称  为过程噪声协方差矩阵。
现在我们再去求一次状态协方差矩阵:
其中:
但要注意的是此时(  时刻)计算的状态协方差矩阵为先验状态协方差矩阵  ,也就是我们根据  时刻的状态协方差矩阵推算得出的。
现在我们获得了预测过程的公式:
从而对应的更新过程公式应该改写为:
发现式  到  中只出现过  ,也就是观测矩阵的下标只有  。观测矩阵在下标为 (也就是最新的时刻)时只具有观测意义,不存在状态转移。因为在定义时观测矩阵  的意义是将最新时刻  目标的状态转变为  时刻的观测量(可以看二、中举的例子),当  时便只有观测意义。于是我们不需要重新定义观测矩阵,当前的式子符合我们的要求。

总结

最小二乘法求解最小目标函数的过程与卡尔曼滤波中求解协方差矩阵迹的最小值的过程非常相似,只不过最小二乘法是使用所有数据来进行优化,而卡尔曼滤波通过对迹求导来获得最优卡尔曼增益。我们可以通过构造特殊拟合函数的方式来让最小二乘法来递推运作,从而只传递状态噪声。然后定义状态转移过程,并加入过程噪声来描述状态转移误差。
相比使用贝叶斯公式与正态分布假设来推导卡尔曼滤波,最小二乘法推导的条件更为宽松。使用贝叶斯公式来推导时需要假设所有的噪声服从正态分布,而最小二乘法推导仅需要满足高斯-马尔可夫定理(噪声零均值、同方差、不相关)即可。当然推导卡尔曼滤波的方法并不只这两种,但了解的越多理解越深刻,对学习也更有帮助。
从递推最小二乘法推导出卡尔曼滤波的过程并不严谨,直接使用先验估计来替换掉递推最小二乘法中的一些项。如果以后有更加严谨的方式我会补上证明。

参考文献

[1] https://zhuanlan.zhihu.com/p/67250500
[2] https://zhuanlan.zhihu.com/p/339118204
[3] https://www.zhihu.com/question/37031188/answer/411760828

来源:PaperWeekly

- The End

声明:欢迎转发本号原创内容,转载和摘编需经本号授权并标注原作者和信息来源为云脑智库。本公众号目前所载内容为本公众号原创、网络转载或根据非密公开性信息资料编辑整理,相关内容仅供参考及学习交流使用。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请跟我们联系。我们致力于保护作者知识产权或作品版权,本公众号所载内容的知识产权或作品版权归原作者所有。本公众号拥有对此声明的最终解释权。

投稿/招聘/推广/合作/入群/赞助 请加微信:15881101905,备注关键词

“阅读是一种习惯,分享是一种美德,我们是一群专业、有态度的知识传播者.”

 阅读原文加入知识星球,发现更多精彩内容.

 分享💬 点赞👍 在看❤️@以“三连”行动支持优质内容! 

云脑智库 努力是一种生活态度,与年龄无关!专注搬运、分享、发表雷达、卫通、通信、化合物半导体等技术应用、行业调研、前沿技术探索!专注相控阵、太赫兹、微波光子、光学等前沿技术学习、分享
评论
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 145浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 127浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 85浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 119浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 45浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 55浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 75浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 68浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 170浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 173浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 104浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 100浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦