如何理解运算放大器的增益带宽积?

云脑智库 2021-12-27 00:00


来源 | 大话硬件

智库 | 云脑智库(CloudBrain-TT)

云圈 | “云脑智库微信群”,请加微信:15881101905,备注您的研究方向

‍‍‍

‍‍‍这篇文章咱们来聊聊运算放大器一个非常重要的参数——增益带宽积。


文章框架如下:

(1)为什么说增益带宽积很重要?

(2)什么是增益带宽积?

(3)什么是单位增益带宽?如何测试出单位增益带宽?

(4)为什么增益带宽积是定值?

(5)增益带宽积怎么用?

(6)为什么仿真波形正负电压不对称?

(7)总结


1.为什么说增益带宽积很重要?

增益带宽积是运放非常重要的参数,主要原因有两点:

  • 增益带宽积这个概念,无论是在硬件笔试还是面试中,但凡涉及到运算放大器,这个概念必考。喜欢考这个参数,重要性不言而喻。

  • 增益带宽积是运算放大器的一个重要性能指标,能决定我们放大电路的性能。

无论是出于哪方面的考虑,我们都需要对这个参数进行了解。这篇文章结合LM385和OPA820两个运算放大器为例,来详细分析增益带宽积这个参数。


2.什么是增益带宽积?

增益带宽积Gain Bandwidth Product,GBWP,GBW,GBP或GB,这些英文简称都是增益带宽积。顾名思义,增益带宽积就是放大器的带宽和带宽对应增益的乘积。用数学表达式表示就是:

使用上式有一个前提条件:即在一定频率范围内,增益带宽积才是一个常数。上式中的fo如果不在满足增益带宽积为定值的范围内,则公式并不成立。


怎么理解上面所说的对频率的的要求呢?


借助LM358和OPA847的数据手册来说明。LM358数据手册中对增益带宽积的描述:最小0.7MHz,典型值为1.1MHz。


同时,LM358开环幅频特性曲线如下图所示:

增益带宽积在一定频率范围内是一个常数,反应在运算放大器的开环增益曲线上就是指定频率出的增益和频率的乘积是定值。


结合数学表达式的描述,可以在开环增益曲线上任意选择两个点来计算增益带宽积的大小。


图中红色实线处的增益是40dB(100倍),此时的频率大约是11KHz,则增益带宽积:GBW=100x11KHz=1.1MHz,与手册中吻合。


图中绿色实线处的增益是60dB(1000倍),此时的频率大约是1.1KHz,则增益带宽积:GBW=1000x11KHz=1.1MHz,与手册中吻合。


从LM358数据手册中可以发现,在1~1MHz以内,都可以使用GBW这个数值来计算给定增益下的带宽。


但是,并不是所有的运算放大器的GBW都能从开环增益曲线上这样直接计算。比如OPA820。下面是OPA820数据手册中对增益带宽积的描述。从手册中可以看出,增益带宽积是定值有限制条件,G>20,就是放大倍数要大于20倍GBW才是定值。



同时,OPA820开环幅频特性曲线如下图所示:

根据前面分析内容,增益带宽积是常数,必须在一定的频率范围内。假设现在OPA820工作在G>20以上的范围内,同样任意选取两个点,计算增益带宽积:

绿色曲线计算增益带宽积:GBW=100x2.3M=230MHz;

蓝色曲线计算增益带宽积:GBW=1000x23k=230MHz;

与手册中典型值有些误差,但是在手册描述的范围内,且为定值。

如果继续计算OPA820手册中G<20的时的数值:

当G=1时,增益带宽积:GBW=1X800=800MHz

当G=2时,增益带宽积:GBW=2X240=480MHz

当G=10时,增益带宽积:GBW=2X30=300MHz


从计算可以看出,随着频率的增加,增益再降低,OPA820的增益带宽积是在不断减少,而满足GBW为定值是在G>20以上的频率范围内。


此时有道判断题,运算放大器开环增益曲线上任意一点的增益和对应带宽乘积一定相等,是否正确,我想这个问题应该能回答了吧。


3.什么是单位增益带宽?如何测试出单位增益带宽?


按照字面理解的意思,增益带宽积是增益和带宽的乘积,单位增益带宽就是单位增益时对应的频率。


结合运算放大器的开环增益曲线,增益为1,也就是0dB,此时的对应的频率即为单位增益带宽。如下图中红色箭头所示位置。



测试运放的单位增益带宽是将运放的闭环增益设定为1,将一个频率可变恒幅正弦小信号输入到运放的输入端,随着输入信号频率不断变大,输出信号增益将不断减小。当从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)时,所对应的信号频率乘以闭环放大倍数1所得的带宽,即为单位增益带宽。


4.为什么增益带宽积是常数呢?

下面来证明一下这个结论。


单纯从开环曲线的角度理解就是,频率每增加10倍,增益降低10倍,因此总的增益和频率的乘积不变。一个变大10倍,一个降低10倍。有这样的结论的理论基础是运算放大器开环增益曲线在主极点后,增益以-20dB/dec下降。


如果使用数学公式来近似表达开环增益曲线:

可以用上面的数学表达式是基于:理想运放增益应该是不随着频率变化,无论是什么样频率信号输入都可以直接被放大,但是实际运放由于半导体工艺的原因和极间的寄生电容,以及考虑到系统的稳定性,半导体制造商会在运放内部增加低通网络,如下图所示:


所以开环增益曲线具有主极点,并在主极点后,以-20dB/dec的斜率下降,和我们在《详细推导波特图增益和相位曲线文章中的低通滤波的幅频特性曲线一致。所以刚刚看到的LM358和0PA820都符合这个特征。


5.增益带宽积怎么用?

如果电路设计是开环的,直接从开环增益曲线上找到增益对应的频率就可以解决问题,但是实际电路中运放都是处于闭环状态,那增益带宽积怎么和我们的设计联系起来呢?


假设我们要使用LM358设计一个放大倍数为10倍,增益为20dB的同相放大器。



推导该放大电路的闭环传递函数:



当Aolβ>1时,闭环传递函数为1/β,根据图示可以计算为10倍,20dB;

当Aolβ<1时,闭环传递函数为Aol,开环曲线和增益带宽积的关系有:

也就是在Aolβ<1时,即开环增益非常小,带宽非常大的时候,上述运算放大器并不能实现10倍的增益,增益,频率之间存在关系。


下面使用TINA软件对该电路进行仿真:

(1)搭建10倍增益放大电路



(2)输入信号为Vpp为20mV的正弦波,频率为10KHz,理论上放大倍数为10倍,输出信号Vpp为200mV。仿真的波形可以看出此时的正电压为98.49mV,负电压为99.99mV。几乎完成了设计电路的放大功能。


(3)输入信号为Vpp为20mV的正弦波,频率为50KHz,理论上放大倍数为10倍,输出信号Vpp为200mV,但是从仿真的波形可以看出此时的正电压为88.54mV,负电压为90.68mV。此时与设计放大电路存在10mV左右的差距。



(4)输入信号为Vpp为20mV的正弦波,频率为150KHz,理论上放大倍数为10倍,输出信号Vpp为200mV,但是从仿真的波形可以看出此时的正电压为55.57mV,负电压为57.15mV。此时与理论设计电路存在45mV的差距。



(5)分析该电路的波特图如下,从数据可以看出,10K信号输入时,电路的放大倍数基本为10倍。50KHz信号输入时,放大倍数只有9.01倍,所以50kHz信号输入时,负电压只有-90.68mV


(6)查看-3dB和150KHz的带宽和放大倍数,在150KHz时放大倍数只有6.54,所以在输入信号为150KHz时,负相最大电压只有57.15mV。                                         



(7)在运放上选取10倍增益,平行于频率的曲线与开环曲线相交,交点处的频率和仿真-3dB处的频率基本吻合。



6.为什么仿真波形正负电压不对称?

根据上面仿真电压可以看出,正电压和负电压输入信号一样,放大倍数一样,但是输出电压却不对称。导致上述的原因是实际的运放存在失调电压,偏置电流,小的失调电压也被放大了,所以正负电压不对称。在后面的文章中会详细分析。



7.总结

增益带宽积是设计运算放大器放大电路时必须要注意的一个参数,特别是在选型时,如果仅考虑增益,没考虑带宽,就会发现怎么总增益上不来。如果仅考虑带宽又不考虑增益,会发现运算放大器的性能没有发挥到极致,浪费了运放的性能。


总之,不懂增益带宽积,可以说不懂运放。

- The End

声明:欢迎转发本号原创内容,转载和摘编需经本号授权并标注原作者和信息来源为云脑智库。本公众号目前所载内容为本公众号原创、网络转载或根据非密公开性信息资料编辑整理,相关内容仅供参考及学习交流使用。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请跟我们联系。我们致力于保护作者知识产权或作品版权,本公众号所载内容的知识产权或作品版权归原作者所有。本公众号拥有对此声明的最终解释权。

投稿/招聘/推广/合作/入群/赞助 请加微信:15881101905,备注关键词

“阅读是一种习惯,分享是一种美德,我们是一群专业、有态度的知识传播者.”

 阅读原文加入知识星球,发现更多精彩内容.

 分享💬 点赞👍 在看❤️@以“三连”行动支持优质内容! 

云脑智库 努力是一种生活态度,与年龄无关!专注搬运、分享、发表雷达、卫通、通信、化合物半导体等技术应用、行业调研、前沿技术探索!专注相控阵、太赫兹、微波光子、光学等前沿技术学习、分享
评论
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 68浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 69浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 84浏览
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 136浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 47浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 105浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 73浏览
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 81浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 77浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 49浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦