
Intel Confidential

White Paper

Flash File Systems
Overview

2 Intel Confidential

Table of Contents
1.0 Overview ...3

1.1 Flash Architecture...3
1.1.1 Partitions ...3
1.1.2 Blocks...3

1.2 Programming Data..3
1.3 Data Integrity ..3

2.0 Flash File System Functions ...4
2.1 Wear Leveling..4
2.2 Reclaim ..4
2.3 Read While Write ...4
2.4 Memory Array Management ...4
2.5 Code Management ..5

3.0 File System Architecture..5
3.1 Architecture/Modular Design..5

4.0 Reliability ...6
4.1 Power Loss Recovery ...6
4.2 Error Code Correction (ECC)...6
4.3 Bad Block Management (NAND only) ...6

5.0 Flash File System Performance..7
5.1 The Importance of Flash File System Performance ..7

6.0 Summary..7

Flash File Systems Overview

Intel Confidential 3

1.0 Overview

Flash memory is a nonvolatile memory, which allows the user
to electrically program (write) and erase information. The
exponential growth of flash memory has made this technology
an indispensable part of hundreds of millions of electronic
devices.

Flash memory has several significant differences with volatile
(RAM) memory and hard drive technologies which requires
unique software drivers and file systems. This paper provides
an overview of file systems for flash memory and focuses on
the unique software requirements of flash memory devices.

1.1 Flash Architecture

1.1.1 Partitions
Flash devices are divided into one or more sections of
memory called partitions. A multi-partition architecture allows
a system processor to read from one partition while
completing a write/erase in another partition. This permits
executing code and programming data in the same flash
device at the same time. In a device with only one partition
similar multi-tasking may be done but it must be handled in
software.

Parameter
Blocks

Data
Blocks

Figure 1 - Asymmetrical Blocking

1.1.2 Blocks
In addition to partitions, flash devices are further divided into
sections of memory called blocks. Flash memory devices are
available in symmetrical and asymmetrical blocking
architectures as shown in Figure 1. Devices with all blocks the
same size are called symmetrically-blocked. Devices that are
asymmetrically-blocked typically have several blocks that are
significantly smaller than the main array of flash blocks. Small
blocks or parameter blocks are typically used for storing small
data or boot code. Block sizes vary but typically range from
64Kb to 256Kb.

1.2 Programming Data
Flash devices allow programming values from a “1” to a “0”,
but not from “0” to a “1” value. To program values back to “1”s
requires erasing a full block. In most cases when data is
edited it must be written to a new location in flash and the old
data invalidated. Eventually invalid data needs to be reclaimed
and this is usually done as a background process.

X

Programming from 1’s to 0’s
is allowed

Programming from 0’s to 1’s is
not allowed

Start off with all 1’s1 1 1 1 1 1 1 1

1 1 0 1 0 1 1 0

X X
1 1 1 1 1 1 1 1

Figure 2 - Flash Programming Limitations

1.3 Data Integrity
The properties of flash memory make it ideal for applications
that require high integrity while operating in challenging
environments. On the hardware level, the integrity of data
written to flash is generally maintained through ECC
algorithms. In the case of NAND, bad block management is
another data integrity issue. NAND flash is inherently less
reliable than NOR flash and it is assumed that a certain
percentage of blocks in a device will go “bad” during the
device lifetime. Software is used to maintain a list of bad
blocks which cannot be used.

Another data integrity issue is power loss. When power is lost
during a write operation, ensuring data integrity is handled in a
file system. Flash file systems must ensure that no data is
corrupted regardless of when power-loss occurs.

White Paper Flash File System Overview

4 Intel Confidential

2.0 Flash File
System Functions
While flash file systems have many functions in common with
file systems for other media there are many needs that are
unique to file systems for flash devices. This section
documents software features that address the distinctive
requirements of flash memory.

2.1 Wear Leveling
Each block in a flash memory device has a finite number of
erase-write cycles. To increase the longevity of a flash device,
writes and erases should be spread as evenly as possible
over all of the blocks on the device. This is called wear
leveling. Wear leveling is generally done in software and while
it is a relatively simple concept, care must be taken in the
software to balance performance with even wear leveling of
blocks.

2.2 Reclaim
As described in section 1.2, edits to files are usually not done
“in place,” rather data is written to a new location and the old
data is invalidated. The invalid data must be cleaned up at
regular intervals and this process is called garbage collection
or reclaim. When a block is reclaimed the valid data is copied
to a clean (erased) block of data called the spare block. When
the reclaim process is completed the old block is erased and it
becomes the new spare block as shown in Figure 3.

Generally, reclaim is done as a low priority background task,
however, if the file system is critically low on free space, the
file system will call a “state of emergency” and initiate a
reclaim as a foreground (high priority) task. Some file systems
also use the garbage collection process to perform other non-
critical functions to make the file system stable or speed up
future writes. Intelligent reclaim algorithms can reduce file
system fragmentation and increase file system performance.

Erased

Erased

Erased

Erased

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Regular
Block

Spare
Block

Erased

Erased

Erased

Erased

Erased

Erased

Erased

Erased

Erased

Erased

Erased

Erased

Erased

Erased

Valid

Valid

Valid

Invalid

Valid

Invalid

Valid

Valid

Invalid

Invalid

Valid

Valid

Valid

Valid

Spare
Block

Reclaimed
Block

Erased

Erased

Erased

Erased

Erased

Erased

Erased

Erased

Erased

Erased

Erased

Erased

Erased

Erased

Before Reclaim After Reclaim

Figure 3 - Reclaiming Invalid Data

2.3 Read While Write
Many real-time applications require the capability to interrupt
flash operations (write, erase) with a higher priority request.
For example, while a flash device is writing data a high priority
read request may need to be executed. Many flash devices
provide the capability to suspend an operation and initiate a
second operation and then return back to the first operation. In
a multi-partition device (shown in Figure 4) each partition can
execute read and write commands independent of each other.
While mainly a hardware function, Hardware Read While Write
requires software support.

In a single partition device, Read While Write is done entirely
in software by suspending a write (or erase) and then initiating
a read (as shown in Figure 5.) While software Read While
Write provides excellent flexibility it usually comes with a
performance tax for suspending / un-suspending flash
operations.

Erase

Write

Read

Multiple Partitions
Each partition can

independently be in
separate modes

Data Partition B

Code Partition

Data Partition A

Suspend
Management

Figure 4 - Read While Write in a Multi-Partition Device

Erase

Write

Read

Entire flash can be in one mode at
a time: Erase, Write, or Read

Suspend
Management

Single Partition

Figure 5 - Read While Write in a Single Partition Device

2.4 Memory Array Management
Flash devices come in a variety of memory array
configurations including single and multiple partitions,

Flash File Systems Overview

Intel Confidential 5

symmetrical and asymmetrical blocking, top and bottom boot
configurations and more. In addition flash devices may be
stacked together to provide even more configuration
variations. In order to maximize the use of flash memory and
support different memory configurations a flash file system
should support the ability to map the memory in flash device
to a configuration required by the application.

Gap support is an example of this. When two flash devices
are stacked together applications may need the two flash
devices to appear as one contiguous array of memory
addresses. A boot block “in between” the two flash devices is
seen as a gap in the flash memory array (as shown in Figure
6).

Boot Block

Block N

….

Block 4

Block 3

Block 2

Block 1

Block N

…..

Block 4

Block 3

Block 2

Block 1

Boot Block
Gap

Figure 6 – Example of Memory Address Gap in Stacked
Flash Devices

Another example of flash array management is virtual partition
support. Applications generally write code and data into
separate partitions on a flash device. In a device with a single
partition (or very large partitions) a file system can provide a
virtual partition capability to separate code and data along
boundaries defined in software. Software partitions can be
more efficient than hardware partitions because designers can
arbitrarily specify the size of a code partition and designate
the rest of the flash device for data instead of only being able
to define partitions based on hardware boundaries.

2.5 Code Management
Flash devices are used to store both code (software
executables) and data. There are two types of code
management techniques available for embedded systems:
Store and Download (SnD) and eXecute in Place (XiP).

In a SnD system, code is copied into RAM and is executed
from RAM (as shown in Figure 7). SnD systems may load a
complete executable into RAM or load parts of the application
into RAM as needed (demand paging). Demand Paging
reduces RAM utilization at the expense of performance.

XiP systems execute code directly from flash without having to
copy the code into RAM (as shown in Figure 8). The XiP

model reduces the amount of system RAM required and
decreases system startup time.

XiP requires a random access memory device and so XiP can
only be supported by NOR flash. NAND devices only support
block addressing and hence can only employ a SnD method.
Software support is required for XiP including writing code to
flash in a contiguous, sequential address space and satisfying
any operating system requirements such as page alignment.
A file system may also support code compression such as the
XiP file system cramfs used in Linux systems. Code
compression reduces the amount of space allocated for code
on a flash device.

CPU

NAND Flash

RAM

Page

Page

Page
Copy

Figure 7 - Store and Download Code Model

NOR Flash

CPU

Figure 8 - XiP Code Model

3.0 File System
Architecture
3.1 Architecture/Modular Design
Although flash file systems vary in their architecture most
have the following components:

• API (Application Programming Interface) Layer
• File System Core
• Block Driver (for sector based file systems)
• Memory Technology Device (MTD) Layer

Dividing a file system into the layers described above
provides a level of modularity that insulates the operating
system and applications which use the file system from
internal file system changes and minimizes the impacts of

White Paper Flash File System Overview

6 Intel Confidential

device level changes on the file system. Figure 9 shows file
system components for both sector and non-sector based file
systems.

The API layer provides external applications with access to
the functions of the file system. The API layer allows the
internals of the file system to change without affecting
applications that use the file system.

Sector based file systems (e.g. FAT) usually have a sector
manager layer that provides an API for basic sector
management functions such as reading, writing and deleting
sectors.

The MTD provides specific information about the flash devices
such as type of device, buffer sizes, block and partition sizes
and erase regions to the flash file system. The ability to
identify multiple devices is an important MTD feature as
various types of flash (NOR & NAND) have to be supported by
the file system. The MTD is the main repository of device
specific code optimizations such as optimizations for block
and page sizes, buffer sizes and read and write limitations.

Application

OS

File System

Flash

Flash Drivers

File System API

Application

OS

Flash

Flash Drivers

File System API

Non-Sector Based
File Systems

Sector Based
File Systems

Block Driver

Sector Based
File System

Figure 9 - Flash File System Environment

4.0 Reliability
This section describes the role of flash file system software in
enhancing flash reliability. In this section we address power
loss, flash reliability, and bad block management as well as
recovery methods for these problems.

4.1 Power Loss Recovery
Power Loss Recovery is an essential element of a non-volatile
memory file system and there are two power loss scenarios
that need to be considered: power loss during program and

power loss during erase. If power loss occurs during a read
operation, it simply means that the read did not take place.

If power loss occurs during a program operation, the file
system needs to return to the last known good state of the file
system. Note that both the data that was written and the file
system structures must be protected from corruption.
Similarly, power loss can take place during an erase
procedure. It is critical to have a recovery mechanism that
prevents future program operations from occurring in the
partially erased block and completes the initial erase attempt.
Furthermore, a file system needs to be able to recover from
single as well as double power loss. Double power loss
means that the power is lost while recovering from the first
power loss event.

Power loss recovery generally uses status bits or a Cyclic
Redundancy Check (CRC) value. When using status bits, the
application sets a status bit to indicate that a write operation
completed successfully. During power loss recovery the
application checks the status bit. If it is set, the data is
considered valid. When using the CRC method, a CRC value
is written during a write operation along with the data. During
power loss recovery a new CRC is generated against the data
written and compared with the existing CRC. If the two CRC
numbers do not match, the data is considered invalid.

4.2 Error Code Correction (ECC)
Error Code Correction (ECC) is a way to identify and correct
errors during read or write operations to flash. ECC is very
common in NAND flash due to NAND reliability issues. Most
ECC for flash can detect and correct single bit errors.
However as NAND, and some NOR, devices trend toward
Multi-Level (MLC) architecture and smaller lithographies, there
is a need to perform multiple bit correction as error rates
increase.

ECC is generally performed within a memory controller
although software ECC is also possible. Several ECC
algorithms are available, including Hamming Code, BCH
(Bose, Chaudhuri, Hocquenghem), and Reed-Solomon - three
that are among the most popular. ECC algorithms vary in
complexity and their impact on design cost.

4.3 Bad Block Management
(NAND only)
A flash device is divided into pre-defined blocks. In the case
where multiple bit errors occur and are not correctable, the
block is considered bad. These blocks are considered
unusable and should not be programmed into any further.
Due to reliability issues, NAND flash generally ships with
existing bad blocks and in addition can develop bad blocks
while in use. Most manufacturers indicate that 98% of the
total blocks should be functional for a device to be considered
utilizable. Bad blocks that exist in the shipped NAND flash, are
usually marked bad in the flash at a location defined by the
manufacturer in device specifications.

Figure 10 provides an example of how bad blocks are
indicated in a shipped NAND device. A NAND device is split
into Main and Spare Areas. Originally, in erased state, all the

Flash File Systems Overview

Intel Confidential 7

bits are set to 1. Manufacturers use the spare area to indicate
which blocks are bad.

Every bit is set to 1 (Fh)
indicating all good blocks

FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF

FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFICFFFFFFFFFF

Every bit is not set to 1 (Fh).
This indicates that this is a
bad block.

Main Array Spare Main Array Spare

Figure 10 - Bad Block Indicators

Another aspect of bad block management is recovery. When
a block goes bad while in use, it may contain previously
programmed valid data and according to many device
manufacturers may be recoverable.

A file system needs to recognize and account for bad blocks
shipped with a device as well as blocks that go bad during
use. In the latter case the current program operation should
be restarted and should be completed in another “good” block.
A file system also tracks the number of bad blocks for the
device to ensure the bad block count is not exceeded.
Additionally, the file system should have the ability to
distinguish between the good and bad blocks despite power
loss.

5.0 Flash File
System Performance
5.1 The Importance of Flash File
System Performance
Historically, flash file systems in embedded devices focused
on reliability for critical user and system data. The focus from
stability to performance came with the emergence of multi-
media and converged devices, such as digital cameras, MP3
players, and smart phones. The user experience is now
defined by response time, and reliability is assumed. With
limited processor and bus speeds, a file system must be
optimized to ensure acceptable performance.

A converged device such as a smart phone with multi-media
capabilities is a good example of the challenging use case
scenarios for file system performance. Files range in size from
small critical system files to large multi-media files. The
frequency of updates in these files also has a similar range in
variability.

A flash file system needs to be optimized for all of these file
types and use cases – providing multi-media read/write
performance and at the same time maximizing the use of
space for small system files. Some key file system functions
that require optimal performance are:

• Read Speed
• Write Speed
• Reclaim
• Initialization Time
• File operations (create, open/close, rename, delete,

find)
A flash file system also needs to ensure that performance
does not degrade over time as a result of fragmentation.

Optimization Methods
While techniques vary, most high performing file systems use
the following techniques among others for optimal
performance:

• Caching schemes to minimize the number of flash vs.
RAM accesses

• Intelligent reclaim algorithms to minimize the number
of reclaims

• Algorithms to minimize system fragmentation
• Multi-threaded operations, including allowing file

reads while writing to a file

6.0 Summary

This paper has addressed the various aspects of flash file
system software and how it impacts the performance,
longevity and data integrity of a flash device. A well designed
flash device and a flash file system can ensure that a flash-
based design utilizes all of the capabilities of the flash device
in the most efficient manner possible.

Intel has a long history in flash memory software and has
been designing flash file systems for over 15 years and has
well over 50 flash software patents. This commitment has
been recognized by flash system designers who have
installed Intel’s flash file systems on more than 300 million
devices worldwide.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION
WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL’S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES
NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER
INTELLECTUAL PROPERTY RIGHT.
Intel Corporation may have patents or pending patent applications,
trademarks, copyrights, or other intellectual property rights that relate
to the presented subject matter. The furnishing of documents and
other materials and information does not provide any license, express
or implied, by estoppel or otherwise, to any such patents, trademarks,
copyrights, or other intellectual property rights.
Intel products are not intended for use in medical, life-saving, life-
sustaining, critical control or safety systems, or in nuclear-facility
applications.
Intel may make changes to dates, specifications, product descriptions,
and plans referenced in this document at any time, without notice.
Designers must not rely on the absence or characteristics of any
features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future
changes to them.
The The Intel® PXA27x Processor and Intel® PXA9xx Cellular Processor
Family may contain design defects or errors known as errata which
may cause the product to deviate from published specifications.
Current characterized errata are available on request.
This Binary Library ("Software") is furnished under license and may
only be used or copied in accordance with the terms of that license.
No license, express or implied, by estoppel or otherwise, to any
intellectual property rights is granted by this document. The Software
is subject to change without notice, and should not be construed as a
commitment by Intel Corporation to market, license, sell or support any
product or technology. Unless otherwise provided for in the license
under which this Software is provided, the Software is provided AS IS,
with no warranties of any kind, express or implied. Except as expressly

permitted by the Software license, neither Intel Corporation nor its
suppliers assumes any responsibility or liability for any errors or
inaccuracies that may appear herein. Except as expressly permitted by
the Software license, no part of the Software may be reproduced,
stored in a retrieval system, transmitted in any form, or distributed by
any means without the express written consent of Intel Corporation.
The source code contained or described herein and all documents
related to the source code ("Material") are owned by Intel Corporation
or its suppliers or licensors. Title to the Material remains with Intel
Corporation or its suppliers and licensors. The Material may contain
trade secrets and proprietary and confidential information of Intel
Corporation and its suppliers and licensors, and is protected by
worldwide copyright and trade secret laws and treaty provisions. No
part of the Material may be used, copied, reproduced, modified,
published, uploaded, posted, transmitted, distributed, or disclosed in
any way without Intel’s prior express written permission.
No license under any patent, copyright, trade secret or other
intellectual property right is granted to or conferred upon you by
disclosure or delivery of the Materials, either expressly, by implication,
inducement, estoppel or otherwise. Any license under such intellectual
property rights must be express and approved by Intel in writing.
Unless otherwise agreed by Intel in writing, you may not remove or
alter this notice or any other notice embedded in Materials by Intel or
Intel’s suppliers or licensors in any way.
JPEG, H.263, H.264, MPEG-4, G.729, G.723, AMR-WB, AMR-NB, AAC,
MP3, MIDI, SBC are international standards. Implementations of JPEG,
H.263, H.264, MPEG-4, G.729, G.723, AMR-WB, AMR-NB, AAC, MP3,
MIDI, SBC codecs, or JPEG, H.263, H.264, MPEG-4, G.729, G.723, AMR-
WB, AMR-NB, AAC, MP3, MIDI, SBC enabled platforms may require
licenses from various entities, including Intel Corporation.
This document and any software described in it are furnished under
license and may only be used or copied in accordance with the terms
of the license. The information in this document is furnished for
informational use only, is subject to change without notice, and should
not be construed as a commitment by Intel Corporation. Intel
Corporation assumes no responsibility or liability for any errors or
inaccuracies that may appear in this document or any software that
may be provided in association with this document.
Except as permitted by such license, no part of this document may be
reproduced, stored in a retrieval system, or transmitted in any form or
by any means without the express written consent of Intel
Corporation.
Contact your local Intel sales office or your distributor to obtain the
latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced
in this document, or other Intel literature, may be obtained by calling
1-800-548-4725, or by visiting Intel's Web site at
http://www.intel.com.
Intel, the Intel logo, Leap Ahead, Intel XScale, Intel XDB JTAG Debugger
for Intel JTAG Cable, JTAG, MMX, Pentium, and Wireless MMX are
trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.
Bluetooth is a trademark owned by its proprietor and used by Intel
Corporation under license.
*Other names and brands may be claimed as the property of others.
INTEL CONFIDENTIAL
Copyright © 2006, Intel Corporation. All rights reserved.

