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1.0 Overview 
 
Flash memory is a nonvolatile memory, which allows the user 
to electrically program (write) and erase information. The 
exponential growth of flash memory has made this technology 
an indispensable part of hundreds of millions of electronic 
devices.  
 
Flash memory has several significant differences with volatile 
(RAM) memory and hard drive technologies which requires 
unique software drivers and file systems. This paper provides 
an overview of file systems for flash memory and focuses on 
the unique software requirements of flash memory devices. 
 

1.1 Flash Architecture 

1.1.1 Partitions  
Flash devices are divided into one or more sections of 
memory called partitions. A multi-partition architecture allows 
a system processor to read from one partition while 
completing a write/erase in another partition.  This permits 
executing code and programming data in the same flash 
device at the same time. In a device with only one partition 
similar multi-tasking may be done but it must be handled in 
software. 
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Figure 1 - Asymmetrical Blocking 

 
 

1.1.2 Blocks  
In addition to partitions, flash devices are further divided into 
sections of memory called blocks. Flash memory devices are 
available in symmetrical and asymmetrical blocking 
architectures as shown in Figure 1.  Devices with all blocks the 
same size are called symmetrically-blocked. Devices that are 
asymmetrically-blocked typically have several blocks that are 
significantly smaller than the main array of flash blocks. Small 
blocks or parameter blocks are typically used for storing small 
data or boot code. Block sizes vary but typically range from 
64Kb to 256Kb.  
 

1.2 Programming Data  
Flash devices allow programming values from a “1” to a “0”, 
but not from “0” to a “1” value.  To program values back to “1”s 
requires erasing a full block. In most cases when data is 
edited it must be written to a new location in flash and the old 
data invalidated. Eventually invalid data needs to be reclaimed 
and this is usually done as a background process.  
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Figure 2 - Flash Programming Limitations 

 

1.3 Data Integrity 
The properties of flash memory make it ideal for applications 
that require high integrity while operating in challenging 
environments. On the hardware level, the integrity of data 
written to flash is generally maintained through ECC 
algorithms. In the case of NAND, bad block management is 
another data integrity issue. NAND flash is inherently less 
reliable than NOR flash and it is assumed that a certain 
percentage of blocks in a device will go “bad” during the 
device lifetime. Software is used to maintain a list of bad 
blocks which cannot be used.  
 
Another data integrity issue is power loss. When power is lost 
during a write operation, ensuring data integrity is handled in a 
file system. Flash file systems must ensure that no data is 
corrupted regardless of when power-loss occurs.  
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2.0 Flash File 
System Functions 
While flash file systems have many functions in common with 
file systems for other media there are many needs that are 
unique to file systems for flash devices.  This section 
documents software features that address the distinctive 
requirements of flash memory.  

2.1 Wear Leveling  
Each block in a flash memory device has a finite number of 
erase-write cycles. To increase the longevity of a flash device, 
writes and erases should be spread as evenly as possible 
over all of the blocks on the device. This is called wear 
leveling. Wear leveling is generally done in software and while 
it is a relatively simple concept, care must be taken in the 
software to balance performance with even wear leveling of 
blocks.  

2.2 Reclaim  
As described in section 1.2, edits to files are usually not done 
“in place,” rather data is written to a new location and the old 
data is invalidated. The invalid data must be cleaned up at 
regular intervals and this process is called garbage collection 
or reclaim. When a block is reclaimed the valid data is copied 
to a clean (erased) block of data called the spare block. When 
the reclaim process is completed the old block is erased and it 
becomes the new spare block as shown in Figure 3. 
 
Generally, reclaim is done as a low priority background task, 
however, if the file system is critically low on free space, the 
file system will call a “state of emergency” and initiate a 
reclaim as a foreground (high priority) task.  Some file systems 
also use the garbage collection process to perform other non-
critical functions to make the file system stable or speed up 
future writes. Intelligent reclaim algorithms can reduce file 
system fragmentation and increase file system performance.  
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Figure 3 - Reclaiming Invalid Data 

 

2.3 Read While Write 
Many real-time applications require the capability to interrupt 
flash operations (write, erase) with a higher priority request. 
For example, while a flash device is writing data a high priority 
read request may need to be executed. Many flash devices 
provide the capability to suspend an operation and initiate a 
second operation and then return back to the first operation. In 
a multi-partition device (shown in Figure 4) each partition can 
execute read and write commands independent of each other.  
While mainly a hardware function, Hardware Read While Write 
requires software support.  
 
In a single partition device, Read While Write is done entirely 
in software by suspending a write (or erase) and then initiating 
a read (as shown in Figure 5.) While software Read While 
Write provides excellent flexibility it usually comes with a 
performance tax for suspending / un-suspending flash 
operations.   
 

Erase

Write

Read

Multiple Partitions
Each partition can 

independently be in 
separate modes

Data Partition B

Code Partition

Data Partition A

Suspend 
Management

 

Figure 4 - Read While Write in a Multi-Partition Device 
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Figure 5 - Read While Write in a Single Partition Device 

 

2.4 Memory Array Management  
Flash devices come in a variety of memory array 
configurations including single and multiple partitions, 
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symmetrical and asymmetrical blocking, top and bottom boot 
configurations and more. In addition flash devices may be 
stacked together to provide even more configuration 
variations. In order to maximize the use of flash memory and 
support different memory configurations a flash file system 
should support the ability to map the memory in flash device 
to a configuration required by the application.  
 
Gap support is an example of this. When two flash devices 
are stacked together applications may need the two flash 
devices to appear as one contiguous array of memory 
addresses. A boot block “in between” the two flash devices is 
seen as a gap in the flash memory array (as shown in Figure 
6).  
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Figure 6 – Example of Memory Address Gap in Stacked 
Flash Devices 

Another example of flash array management is virtual partition 
support. Applications generally write code and data into 
separate partitions on a flash device. In a device with a single 
partition (or very large partitions) a file system can provide a 
virtual partition capability to separate code and data along 
boundaries defined in software. Software partitions can be 
more efficient than hardware partitions because designers can 
arbitrarily specify the size of a code partition and designate 
the rest of the flash device for data instead of only being able 
to define partitions based on hardware boundaries. 
 

2.5 Code Management  
Flash devices are used to store both code (software 
executables) and data. There are two types of code 
management techniques available for embedded systems:  
Store and Download (SnD) and eXecute in Place (XiP).   
 
In a SnD system, code is copied into RAM and is executed 
from RAM (as shown in Figure 7).  SnD systems may load a 
complete executable into RAM or load parts of the application 
into RAM as needed (demand paging). Demand Paging 
reduces RAM utilization at the expense of performance. 
 
XiP systems execute code directly from flash without having to 
copy the code into RAM (as shown in Figure 8). The XiP 

model reduces the amount of system RAM required and 
decreases system startup time.  
 
XiP requires a random access memory device and so XiP can 
only be supported by NOR flash. NAND devices only support 
block addressing and hence can only employ a SnD method.  
Software support is required for XiP including writing code to 
flash in a contiguous, sequential address space and satisfying 
any operating system requirements such as page alignment. 
A file system may also support code compression such as the 
XiP file system cramfs used in Linux systems. Code 
compression reduces the amount of space allocated for code 
on a flash device.  
 

CPU 

NAND Flash  

RAM 

Page 

 

Page 

Page 
Copy 

 

Figure 7 - Store and Download Code Model 
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Figure 8 - XiP Code Model 

3.0 File System 
Architecture 
3.1 Architecture/Modular Design 
Although flash file systems vary in their architecture most 
have the following components:  

• API (Application Programming Interface) Layer  
• File System Core  
• Block Driver (for sector based file systems) 
• Memory Technology Device (MTD) Layer  

 
Dividing a file system into the layers described above  
provides a level of modularity that insulates the operating 
system and applications which use the file system from 
internal file system changes and minimizes the impacts of 
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device level changes on the file system. Figure 9 shows file 
system components for both sector and non-sector based file 
systems.  
 
The API layer provides external applications with access to 
the functions of the file system. The API layer allows the 
internals of the file system to change without affecting 
applications that use the file system.  
 
Sector based file systems (e.g. FAT) usually have a sector 
manager layer that provides an API for basic sector 
management functions such as reading, writing and deleting 
sectors.  
 
The MTD provides specific information about the flash devices 
such as type of device, buffer sizes, block and partition sizes 
and erase regions to the flash file system.  The ability to 
identify multiple devices is an important MTD feature as 
various types of flash (NOR & NAND) have to be supported by 
the file system.  The MTD is the main repository of device 
specific code optimizations such as optimizations for block 
and page sizes, buffer sizes and read and write limitations.  
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Figure 9 - Flash File System Environment 

4.0 Reliability 
This section describes the role of flash file system software in 
enhancing flash reliability.  In this section we address power 
loss, flash reliability, and bad block management as well as 
recovery methods for these problems. 
 

4.1 Power Loss Recovery 
Power Loss Recovery is an essential element of a non-volatile 
memory file system and there are two power loss scenarios 
that need to be considered:  power loss during program and 

power loss during erase.  If power loss occurs during a read 
operation, it simply means that the read did not take place.   
 
If power loss occurs during a program operation, the file 
system needs to return to the last known good state of the file 
system.  Note that both the data that was written and the file 
system structures must be protected from corruption. 
Similarly, power loss can take place during an erase 
procedure.  It is critical to have a recovery mechanism that 
prevents future program operations from occurring in the 
partially erased block and completes the initial erase attempt.  
Furthermore, a file system needs to be able to recover from 
single as well as double power loss.  Double power loss 
means that the power is lost while recovering from the first 
power loss event.   
 
Power loss recovery generally uses status bits or a Cyclic 
Redundancy Check (CRC) value. When using status bits, the 
application sets a status bit to indicate that a write operation 
completed successfully. During power loss recovery the 
application checks the status bit. If it is set, the data is 
considered valid. When using the CRC method, a CRC value 
is written during a write operation along with the data. During 
power loss recovery a new CRC is generated against the data 
written and compared with the existing CRC. If the two CRC 
numbers do not match, the data is considered invalid. 

4.2 Error Code Correction (ECC) 
Error Code Correction (ECC) is a way to identify and correct 
errors during read or write operations to flash. ECC is very 
common in NAND flash due to NAND reliability issues. Most 
ECC for flash can detect and correct single bit errors.  
However as NAND, and some NOR, devices trend toward 
Multi-Level (MLC) architecture and smaller lithographies, there 
is a need to perform multiple bit correction as error rates 
increase. 
 
ECC is generally performed within a memory controller 
although software ECC is also possible.  Several ECC 
algorithms are available, including Hamming Code, BCH 
(Bose, Chaudhuri, Hocquenghem), and Reed-Solomon - three 
that are among the most popular.  ECC algorithms vary in 
complexity and their impact on design cost. 

4.3 Bad Block Management 
(NAND only) 
A flash device is divided into pre-defined blocks.  In the case 
where multiple bit errors occur and are not correctable, the 
block is considered bad.  These blocks are considered 
unusable and should not be programmed into any further.  
Due to reliability issues, NAND flash generally ships with 
existing bad blocks and in addition can develop bad blocks 
while in use.  Most manufacturers indicate that 98% of the 
total blocks should be functional for a device to be considered 
utilizable. Bad blocks that exist in the shipped NAND flash, are 
usually marked bad in the flash at a location defined by the 
manufacturer in device specifications.  
 
Figure 10 provides an example of how bad blocks are 
indicated in a shipped NAND device.  A NAND device is split 
into Main and Spare Areas.  Originally, in erased state, all the 
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bits are set to 1.  Manufacturers use the spare area to indicate 
which blocks are bad.  

Every bit is set to 1 (Fh) 
indicating all good blocks

FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF

FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFICFFFFFFFFFF

Every bit is not set to 1 (Fh).  
This indicates that this is a 
bad block.

Main Array          Spare Main Array          Spare

 

Figure 10 - Bad Block Indicators 

 
Another aspect of bad block management is recovery.  When 
a block goes bad while in use, it may contain previously 
programmed valid data and according to many device 
manufacturers may be recoverable.  
 
A file system needs to recognize and account for bad blocks 
shipped with a device as well as blocks that go bad during 
use.  In the latter case the current program operation should 
be restarted and should be completed in another “good” block.  
A file system also tracks the number of bad blocks for the 
device to ensure the bad block count is not exceeded. 
Additionally, the file system should have the ability to 
distinguish between the good and bad blocks despite power 
loss.   

5.0 Flash File 
System Performance  
5.1 The Importance of Flash File 
System Performance 
Historically, flash file systems in embedded devices focused 
on reliability for critical user and system data. The focus from 
stability to performance came with the emergence of multi-
media and converged devices, such as digital cameras, MP3 
players, and smart phones. The user experience is now 
defined by response time, and reliability is assumed. With 
limited processor and bus speeds, a file system must be 
optimized to ensure acceptable performance.  
 

A converged device such as a smart phone with multi-media 
capabilities is a good example of the challenging use case 
scenarios for file system performance. Files range in size from 
small critical system files to large multi-media files.  The 
frequency of updates in these files also has a similar range in 
variability.  
 
A flash file system needs to be optimized for all of these file 
types and use cases – providing multi-media read/write 
performance and at the same time maximizing the use of 
space for small system files. Some key file system functions 
that require optimal performance are:  

• Read Speed  
• Write Speed  
• Reclaim  
• Initialization Time  
• File operations (create, open/close, rename, delete, 

find) 
A flash file system also needs to ensure that performance 
does not degrade over time as a result of fragmentation.  
 
Optimization Methods  
While techniques vary, most high performing file systems use 
the following techniques among others for optimal 
performance: 

• Caching schemes to minimize the number of flash vs. 
RAM accesses 

• Intelligent reclaim algorithms to minimize the number 
of reclaims 

• Algorithms to minimize system fragmentation 
• Multi-threaded operations, including allowing file 

reads while writing to a file   

6.0 Summary 
 
This paper has addressed the various aspects of flash file 
system software and how it impacts the performance, 
longevity and data integrity of a flash device. A well designed 
flash device and a flash file system can ensure that a flash-
based design utilizes all of the capabilities of the flash device 
in the most efficient manner possible.  
 

Intel has a long history in flash memory software and has 
been designing flash file systems for over 15 years and has 
well over 50 flash software patents. This commitment has 
been recognized by flash system designers who have 
installed Intel’s flash file systems on more than 300 million 
devices worldwide. 
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