

 Page 1 of 11

Four Steps to Creating Great 32-
Bit Microcontroller Applications
A series of four step-by-step guides to using the ARM RealView
Microcontroller Development Kit

Guide 1: Selecting the right microcontroller for your
application

Rod Crawford June 2006

Abstract: Selecting the right ARM® processor-based microcontroller (MCU) for your
application can be a daunting task. With more than 125 ARM processor-based
microcontrollers available, finding one with the right peripheral set and performance
criteria could take extensive research. This white paper describes how the
parametric search engine in the Device Database®, which integrates with the
RealView® Microcontroller Development Kit, can be used to quickly choose the right
MCU for your application. In addition, we show how the Device Database can be
used to configure the tools in the RealView Microcontroller Development Kit for the
chosen MCU part.

Overview
In the modern world of embedded development, the demand to stay ahead of
competitors, coupled with the ready availability of low-cost, high-performance 32-bit
microcontrollers, is leading to widespread adoption of these parts in new products,
taking over from the 8-bit and 16-bit microcontrollers of yesteryear. When choosing a
microcontroller, embedded developers have four main criteria by which they make
their choice: functionality, availability, cost and familiarity. In this paper, we discuss
how an online Device Database can be used to aid developers in making the right
choice for their application. We also demonstrate how the Device Database
integrates with the RealView Microcontroller Development Kit to allow developers to
automatically configure their toolchain for development with the chosen MCU.

The problem of choice
Today, when selecting an MCU that will deliver the required peripheral set and
performance at the right price-point, developers are faced with a considerable
breadth of choice. There are more than sixteen semiconductor companies shipping
ARM processor-based MCUs, including some of the largest providers of MCUs in the
world. Each semiconductor vendor offers not just one MCU but several families of
MCUs that target specific market areas. At the time of writing, there are more than

125 ARM processor-based MCUs available and that number is growing week on
week.

Some vendors offer some form of online search tool that allows developers to
compare and contrast the MCUs in their product portfolio. However that doesn’t help
when wanting to compare the MCUs of one vendor with those of another vendor.
What is really is needed is a tool that allows developers to compare and contrast
MCUs within product families, across product families and across vendors. That’s
where the Device Database comes in.

The Device Database
The Device Database is a searchable database that contains information about the
various MCUs supported by software development tools from Keil™ — an ARM
Company, including those ARM processor-based MCUs supported by the RealView
Microcontroller Development Kit. There are two editions of the Device Database, one
online at www.keil.com/dd and one built into the RealView Microcontroller
Development Kit. The parametric search function is available only on the Web-based
edition.

The database includes the following information for supported MCUs:

Entry Description

Part Description A brief description of each device including part
number, core and peripheral set.

Header Files
C and assembly language header files that
describe the SFRs (Special Function Registers)
available for this MCU.

Example Code Code snippets and example programs that have
been written for the selected MCU or MCU family.

Peripheral Simulation

List of the on-chip peripherals that are fully
simulated by the µVision® Integrated Development
Environment (IDE), which is integrated with the
RealView Microcontroller Development Kit.

Data Sheets Data sheets related to the MCU part that may be
downloaded from the Keil web site.

Boards The available evaluation boards for the selected
MCU.

Emulators The available emulators for the selected MCU.

 Page 2 of 11

http://www.keil.com/dd

Third-Party Software Software that can run on the MCU, such as Real-
Time Operating Systems and application libraries.

Consultants A list of software and hardware consulting
companies familiar this MCU.

.
In addition to the above, the database contains links to FindChips.com, which can list
what distributors carry a particular MCU.

Database searches
The Device Database can be searched for MCUs in the following ways:

• Architecture, which shows all MCUs that support a particular processor
architecture. E.g., searching by ARM Architecture will list all of the vendors
that support the ARM architecture at the heart of an MCU.

• Vendor, which shows all MCUs produced by particular silicon vendor. E.g.,
searching for Philips as a vendor will list all MCU families and MCUs that
Philips produces.

• Parametric, which allows developers to enter the requirements for the MCU
they want to find.

Using the power of the parametric search
The parametric search capability of the Device Database is perhaps of the most
interest to developers, since it enables them to search for specific peripheral sets
and performance criteria across the whole range of MCUs without being constrained
by the search capabilities of any single processor vendor. Using this kind of search,
developers can quickly home in on a single MCU part or MCU family that will offer
the best match of performance, peripheral set and scalability for future-proofing.

Parametric search example
To show some of the advanced capabilities of the parametric search of the Device
Database, we will use the following example:

Example: Remote Temperature Logging Device
The device we are creating is a remote temperature sensing device with the ability to
log information from a sensor over time and store it locally. The device should run on
batteries when in the field and should have failsafe reboot should it crash. When the
device is docked via USB, the device should be able to dumps its log via USB and
synchronize its clock for further data collection. Based on these criteria, we can distill
the requirements for the MCU to the following:

Peripheral Parameter
On-chip RAM >8K

 Page 3 of 11

On-chip Flash >64K
A/D Channels 8+
Power-Down Mode Yes
Idle Mode Yes
Real-Time Clock Yes
Watchdog Timer Yes
USB Yes

If we feed these parameters as a parametric search into the Device Database, we
find that there are currently two ARM processor-based MCU families from different
MCU vendors, each with four MCU parts that fit the bill. Using this kind of search
across different MCU vendors has narrowed our choice from more than 125 MCUs
to eight. From here, we can examine each individual part entry in the Device
Database and make our final decision based on more subjective criteria, such as
past experience, clarity of documentation, relevance of applications libraries and
example code and, of course, price/volume.

RealView Microcontroller Development Kit configuration
In the above example, we have shown how the Device Database can be used as a
stand-alone tool on the Web to make informed decisions regarding the choice of
MCU for a particular application. However, the Device Database’s usefulness
extends beyond this, because it can also be used during the setup phase for a
particular application project. The RealView Microcontroller Development Kit
contains an edition of the Device Database which is invoked when a developer
begins a new project. When the developer specifies the chosen MCU in the Device
Database within the RealView Microcontroller Development Kit’s µVision IDE, the
database’s knowledge of that MCU is used to automatically configure and tailor the
development tools specifically to that MCU. This can significantly reduce tooling
setup times. The automatic tools configuration includes the following:

Simulator setup
This configures the µVision simulator to model the appropriate MCU including
default clock rate, instruction set, register set, internal ROM and RAM spaces and
peripheral set.

 Page 4 of 11

Figure 1: Setting options for the target MCU

Linker setup
This builds a linker readable memory map or Scatter File that defines where the
linker should place the code to the right addresses and tells the MCU simulator the
layout of the memory map (the simulator can trap writes to non-memory or read-only
memory).

Compiler and assembler setup
This sets the compiler and assemblers include path to include the correct header
files for this MCU.

Installation of startup code into the project
This prepends the source of the relevant example MCU startup code to the start of
the project, ensuring that after reset the MCU is put into a known, well-defined state
prior to execution of the application.

In addition to the above, the automatic configuration sets several useful defaults for
first-time use of the tools, including compiling for debug, generation of a map file and
call graph. Each of these options is shown in the Options for Target GUI in the
µVision IDE as both a GUI changeable item and the set of command line arguments

 Page 5 of 11

for each tool the GUI generates. Figure 1 shows the target configuration for a Philips
LPC2148 MCU with entries for its on-chip memory map and default clock rate
automatically completed from the MCU’s entry in the Device Database. The user can
then add additional configuration options, such as additional on-board memory
locations, to the configuration.

Conclusion
At the beginning of this guide, we stated that when choosing an MCU, embedded
developers have four main criteria by which they make their choice: functionality,
availability, cost and familiarity. The Device Database is unique in its ability to enable
developers to make informed choices on these criteria by allowing them to:

• Search for specific functionality across the whole range of ARM processor-
based MCUs.

• Quickly find pricing and availability of MCUs from distributors.
• Rapidly start working in the familiar µVision development environment that

has been pre-configured to build applications for their specific chosen MCU.

Please read on. “Guide 2: Developing your first application for an ARM processor-based
microcontroller” continues on the next page.

 Page 6 of 11

Guide 2: Developing your first application for an ARM
processor-based microcontroller

Rod Crawford August 2006

Abstract: The power of 32-bit processor-based microcontrollers is enabling a
significant shift in the embedded development world toward off-the-shelf software
components and industry standard high-level languages. This guide describes how
the RealView Microcontroller Development Kit from ARM and its associated
RealView Real-Time Library deliver a high-performance configurable software
platform that can be used as a foundation to jump-start the rapid creation of ARM
processor-based microcontroller (MCU) applications.

Introduction
The high performance provided by 32-bit ARM processor-based microcontrollers is
allowing the use of large-scale, off-the-shelf software components that 8-bit and16-
bit microcontrollers could never adequately support. Embedded developers can now
program their MCU applications using high-level languages such as ISO standard C
and C++. The use of high-level languages more easily supports the use of off-the-
shelf software components such as real-time operating systems, file systems and
networking libraries. The process of software development becomes a matter of
bolting components together, enabling embedded applications to be built quickly with
little knowledge of the inner working of components or of the peripherals they
service.

The ARM RealView Microcontroller Development Kit and RealView Real-Time
Library offer a set of software components that address many of the common
requirements of modern-day embedded applications. In addition, the Device
Database contains many example programs that utilize these software components
and provides high level template applications that can be adapted into a final
application.

Target Configuration
Correctly setting up the target environment for an embedded application can take
considerable time to get right. As noted in Guide 1, the RealView Microcontroller
Development Kit can add specific startup code for a chosen microcontroller at the
start of a project, enabling the developer’s applications to begin execution when the
MCU is in a known well-defined state. However, the memory requirements and
peripheral behavioral requirements of each application that runs on a specific MCU
can be significantly different, and it is impossible for the supplied startup code to
cater for every possible setup that developers may require.

One approach is for developers to take a standard set of startup code and
incrementally modify it until the required state of the MCU and its resources, such as
stacks, is achieved. This approach, while undoubtedly leading to success, can be

 Page 7 of 11

time consuming. The RealView Microcontroller Development Kit offers an alternative
approach to hand modifying the example startup code with a Configuration Wizard
that provides a high-level view of the resources of the MCU that map onto the startup
code. Figure 1 shows part of the configuration for two of the chip select registers on
the external bus interface of an Atmel AT91M55800A microcontroller. The developer
can easily enable and configure a specific chip select register by modifying the
values for each entry.

Figure 2

This approach significantly simplifies the creation of startup code since the startup
code is automatically generated as the Configuration Wizard is completed. E.g.
completion of the entries for Chip Select 0 (CSR0) automatically modifies the
numeric value associated with an ARM assembler constant declaration of the form:

EBI_CSR0_Val EQU 0x010024A9

This constant is used later in startup code for the initialization of the external bus
interface.

Under the Hood of the Configuration Wizard
The Configuration Wizard uses a simple markup language to define what the user
sees in its dialog box and how the user’s choices generate numeric and textual
items. Markup language can be embedded in the comments of C, C++ or assembler
source code or any text file, for that matter. This allows the Configuration Wizard to

 Page 8 of 11

be used for any kind of configuration which is defined using a numeric string. Figure
2 shows an example of the Configuration Wizard being used to configure the heap
size of a target system. Figure 3 shows the underlying markup language for this
example. The tags <h> and </h> define the start and end of the heap entry with its
associated label. The <o> tag defines a user editable entry within a numeric range.
The actual entry to be edited in this is example is implicitly the first numeric field
following the markup (0x00000000). The user can define a field offset by specifying a
number after the o.

Figure 3

Figure 4

Software Applications Libraries
The high performance provided by ARM processor-based MCU’s allows their use in
market areas which are relatively more computationally intense than other markets
addressed by 8- and 16-bit MCUs. Addressing these markets successfully requires

 Page 9 of 11

more complicated software. While a typical 8-bit application might contain a Real-
Time Operating System (RTOS) and some control code, modern 32-bit MCU
applications typically will contain complete communication stacks that are an order of
magnitude more complex than the humble RTOS.

Figure 5

The RealView Real-Time Library provides a set of commonly required software
components that can easily be deployed on ARM processor-based MCUs. The
library contains such items as a TCP/IP networking stack, Flash file system, USB
device driver and CAN device driver optimized for the specific peripherals of the
MCUs they support. Developers can quickly configure the components using the
Configuration Wizard in the RealView Microcontroller Development Kit. Figure 4
shows an example of the Configuration Wizard being used to configure a USB2
stack.

The RTX real-time kernel is included as a configurable object in the RealView
Microcontroller Development Kit and is provided in source form in the RealView
Real-Time Library. This is a fully featured real-time kernel offering many of the most
common resource abstractions found in a modern RTOS, including threads, timers,
queues, mailboxes, semaphores, mutexes, block pools and event flags. Developers
can use the kernel to combine components from the Real-Time Library so that they
execute as separate communicating tasks on a target system.

Code Templates and Application Examples
The RealView Microcontroller Development Kit contains several example
applications for each supported MCU. Developers can use the examples as

 Page 10 of 11

templates for their applications, removing the need for in-depth knowledge of their
chosen MCU just to begin development. The examples cover common initial
development requirements such as setting up interrupts, flashing an LED or writing
text to an output device, as well as complete analog data acquisition and real-time
OS examples.

The RealView Real-Time Library also ships with several example applications that
utilize components of the RealView Real-Time Library in typical real world scenarios.
These can be used as basis for a complete embedded application. Examples
include:

• Embedded Web server with CGI scripting
• SMTP email notification
• Telnet
• USB memory device
• USB human interface device
• USB audio device

Conclusion
Developing microcontroller applications using 32-bit ARM processor-based MCUs
enables developers to leverage a broad range of off-the-shelf software components
in a way that was previously not feasible on 8- and 16-bit MCUs. The sheer
horsepower and memory addressing capabilities of an ARM processor-based MCU
invariably removes the need for hand-coded assembler or proprietary software
libraries. The RealView Microcontroller Development Kit and RealView Real-Time
Library provide developers with a pool of common software components and
examples that they can use as the fundamental building blocks for their application.
The target system and software components can be easily configured for the desired
application in the RealView Microcontroller Development Kit’s μVision IDE by using
the inbuilt Configuration Wizard. By using these configurable components, coupled
with a real-time kernel, developers can get their application to market faster with a
higher degree of confidence than ever before.

© 2006 ARM Limited. All Rights Reserved.
ARM, RealView, Device Database and μVision are registered trademarks of ARM Ltd. Keil is a trademark of ARM Ltd. All other
trademarks are the property of their respective owners and are acknowledged.

 Page 11 of 11

	Four Steps to Creating Great 32-Bit Microcontroller Applications
	A series of four step-by-step guides to using the ARM RealView Microcontroller Development Kit

	Guide 1: Selecting the right microcontroller for your application
	Rod Crawford June 2006
	Overview
	The problem of choice
	The Device Database
	Database searches
	RealView Microcontroller Development Kit configuration

	Linker setup
	Compiler and assembler setup
	Installation of startup code into the project

	 Guide 2: Developing your first application for an ARM processor-based microcontroller
	Rod Crawford August 2006

	Introduction
	Target Configuration
	Under the Hood of the Configuration Wizard
	Software Applications Libraries
	Code Templates and Application Examples
	Conclusion

